Abstract:
A method of manufacturing an electromagnetic induction device with On-Load Tap Changer. The method includes: a) providing an electromagnetic core with windings, b) suspending an OLTC insulation barrier from the electromagnetic induction device by a suspension, wherein the OLTC interface barrier arrangement is arranged to act as a barrier between an electromagnetic core housing and an OLTC, and wherein the OLTC interface barrier arrangement is provided with a first set of electrical connections arranged to be connected to the windings and a second set of electrical connections arranged to be connected to the OLTC, c) connecting the first set of electrical connections to the windings, and d) subjecting the windings and the OLTC interface barrier arrangement to a drying process.
Abstract:
A method is performed in a control device for controlling a power compensation arrangement including a voltage source converter and one or more power compensation branches, each power compensation branch including a thyristor controlled reactor, a thyristor switched reactor or a thyristor controlled capacitor. The voltage source converter and the one or more power compensation branches are connected to a same busbar. The method includes: detecting a request in an electrical power system to which the power compensation arrangement is connected; determining, based on the request, a need for reactive power supply to the electrical power system; providing reactive power by means of the voltage source converter and/or by one or more of the power compensation branches; and compensating, by means of the voltage source converter, any disturbances caused by the power compensation branches when providing the reactive power to the electrical power system. Corresponding devices are also disclosed.
Abstract:
An electrical power component, such as a bushing. The power component includes a housing, a condenser core arranged in the housing and including an electrical insulation, a space formed between the condenser core and the housing, an expansion vessel positioned adjacent and in open communication with the space between the condenser core and the housing, and an electrically insulating fluid, such as oil, contained in the space between the condenser core and the. The power component further includes one or more filler elements having a higher density and lower thermal expansion coefficient than the fluid, and the one or more filler elements are movably arranged in the expansion vessel.
Abstract:
The invention relates to methods and devices for controlling unbalanced active power flow in a three-phase modular multilevel converter 20. The converter 20 comprises a first and second converter 4, 5 both comprising three phase legs arranged in a wye-connection. The first and second converters 4, 5 are interconnected in a double-wye connection, and their neutral paths are independently floating. The method 200 comprises: detecting an active power flow in the phase legs; determining a zero-sequence voltage, the determination providing magnitude and phase of the zero-sequence voltage; re-computing the magnitude of the zero-sequence voltage while keeping the phase of the zero-sequence voltage fixed, the magnitude being re-computed with the requirement that the resulting voltage over the phase legs is smaller than or equal to a maximum allowed leg voltage, the re-computed magnitude and the phase giving a re-computed zero-sequence voltage; imposing the re-computed zero-sequence voltage on the neutral point of the first and second converters, thereby reducing the active power flow determining remaining active power based on the re-computed magnitude of the zero-sequence voltage; determining a DC current giving a product with a DC voltage of the first and second converters 4, 5 that will counteract remaining active power; and imposing the DC current on the phase legs.
Abstract:
The present invention relates to a material comprising reduced graphene oxide, wherein the degree of reduction of the graphene oxide exhibits a spatial variation so that the material exhibits a gradient in the electric conductivity and/or permittivity. The material can for example be used in an electric device for purposes of field grading and/or dissipation of charges. Examples of electric devices wherein the material is beneficial includes cable accessories, bushings, power cables, microelectronics, switchgear, etc. The invention further relates to a method of producing a material for electrical applications. The method comprises treating different parts of a graphene oxide element differently, so as to achieve a different degree of reduction of the graphene oxide within the element, resulting in a sample having a gradient in the electrical conductivity and/or permittivity. The material could for example be obtained by means of applying a thermal gradient to a graphene oxide element, or by irradiation of a graphene oxide element.
Abstract:
A method, computer program product and video communication device are provided for transmitting video to a remote user. The video communication device includes a communication interface for providing a communication session with a device of the remote user, a camera capturing images, and a control unit configured to obtain a three-dimensional model of the location, control the camera to capture video images of the location, determine a current orientation of the video communication device, and transfer the three-dimensional model and orientation to the device of the remote user together with a video stream from the camera comprising the captured video images.
Abstract:
An arrangement for tapping power from a DC power line to an AC power line includes power transfer modules between two DC potentials, each including a first branch with a string of converter cells in parallel with a second branch including a capacitor and being connected to an AC phase. There is at least one control unit that controls the arrangement considering one or more of a) distributing appropriate AC and DC voltages in converter output voltages of all series connected modules, b) maintaining/setting cell capacitor voltages in specific range and allowing boost mode operation, c) performing possible balancing of the introduced capacitor and d) employing an alternate approach of using passive filters to mitigate low order harmonics.
Abstract:
A power cable assembly device adapted to be arranged in the spaces between neighbouring power cores of a power cable, includes an extruded profiled body made of a polymer material and adapted to the cross-sectional shape and elongation of the power cable, the profiled body including a chamber and defining a slit to the chamber, the chamber being adapted to receive a fibre optic cable via the slit. Substantially the whole surface of the profiled body inside the chamber, the surface of the profiled body defining the slit, and the surface of at least a region outside the profiled body extending from the slit and away from the slit is provided with a layer of semi-conductive material.
Abstract:
An apparatus for enclosing a medium and/or high voltage unit connectable to an electric power system. The unit includes one or a plurality of electrical components and generates heat as a by-product during operation. The apparatus includes a housing including a main chamber housing a seat for holding the unit. The main chamber is arranged to house the unit. The housing includes at least one gas exit opening at an upper part of the housing and at least one gas entry opening. The housing includes a sound-absorptive gas exit chamber provided with the at least one gas exit opening. The housing includes a sound-absorptive gas entry chamber provided with the at least one gas entry opening. A first free heat convection path is provided inside the housing between the at least one gas entry opening and the at least one gas exit opening, via the gas entry chamber, via the main chamber and via the gas exit chamber, in order to provide cooling. Each of the gas exit chamber and the gas entry chamber houses at least one sound-absorbing member for absorbing sound produced by the unit during operation. At least one of the gas exit chamber and the gas entry chamber has at least one heat conducting wall and at least one free space provided between the at least one sound-absorbing member and said wall such that the first free heat convection path is provided inside the housing between the at least one gas entry opening and the at least one gas exit opening via the at least one free space.
Abstract:
A tool for opening an extruded profiled body of a power cord assembly device includes at least one pair of guides and at least one support, the pair of guides and the support being arranged in a frame, wherein a first guide of the pair of guides is arranged and shaped to releasably connect to the an interconnection area of the profiled body, and wherein a second guide of the pair of guides is arranged and shaped to releasably connect to a second interconnection area of the profiled body, said support being provided with a support member adapted to bear against a portion of the first wall opposite to a slit in the profiled body, the distance of the pair of guides relative to the support being such that the slit is widened in the area of the elongation of the profiled body where the tool is applied, thereby allowing a fibre optic cable to be introduced into the chamber.