Abstract:
A method performed by a user equipment that includes receiving a redundancy version (RV) of control information during a transmission time interval (TTI) from a network to which the user equipment has established a connection, wherein the control information comprises a plurality of RVs, determining a first value corresponding to the TTI, determining a second value based on a connectivity parameter measurement of the connection and determining whether to perform a decode operation on the RV based on a comparison of the first value and the second value.
Abstract:
Apparatuses, systems, and methods for a base station to perform a method construct dynamic hierarchical sub-configurations of bandwidth parts (BWPs) for use in a connected mode discontinuous reception (CDRX) communication session with a user equipment (UE) device. The base station may configure a first BWP at a baseband frequency associated with the CDRX communication session as a default BWP, a second BWP with a wider bandwidth than the first BWP as a transmission BWP, and one or more third BWPs as resting BWPs. The transmission BWP and the one or more resting BWPs may be configured to periodically override the default BWP as the active BWP for a predetermined number of CDRX cycles. The transmission BWP may be utilized, when activated to perform data transmission by UE device, and the one or more resting BWPs may be utilized, when activated, for performing channel measurements.
Abstract:
A method is disclosed where a user equipment (“UE”) determines a value of a first parameter and determines a value of a second parameter to select a regularization method for correlation estimate values based on the first parameter value and the second parameter value.
Abstract:
A method to be performed at a station configured to connect to a Long Term Evolution radio access network (LTE-RAN) to utilize enhanced Multimedia Broadcast Multicast Services using a Multicast-Broadcast Single-Frequency Network (MBSFN). The method including receiving a MBSFN subframe having a MBSFN subframe structure including a plurality of Orthogonal Frequency-Division Multiplexing (OFDM) symbols, a first one of the OFDM symbols having a first reference symbol inserted therein, a second one of the OFDM symbols having a second reference symbol inserted therein, determining a rate of change of channel conditions being experienced by the station and performing a non-destaggered channel estimation when the rate of change of channel conditions is greater than a predetermined threshold, the non-destaggered channel estimation using a first Channel Impulse Response (CIR) at the first OFDM symbol and a second CIR at the second OFDM symbol.
Abstract:
Method and apparatus for co-existence management between mitigation techniques where a user device (“UE”) is connected to a base station (“BS”) of a network. The UE may receive a first value of a BS parameter from the BS and may determine a second value of a signal quality parameter corresponding to a signal received by the UE from the BS. The UE may then select an operating mode for the UE based on the first value and the second value, where the operating mode comprises implementing at least one interference mitigation technique.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform simultaneous uplink activity for multiple RATs in the same carrier using frequency division multiplexing. The wireless device may establish a first wireless link with a first base station according to a first radio access technology (RAT) and a second wireless link with a second base station according to a second RAT. The first base station may provide a first cell operating in a first system bandwidth and the second base station may provide a second cell operating in a second system bandwidth. The wireless device may determine whether the wireless device has uplink activity scheduled according to both the first RAT and the second RAT. If so, the wireless device may perform uplink activity for both the first RAT and the second RAT in the first system bandwidth using frequency division multiplexing.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
Methods and apparatus to reduce power consumption in user equipment (UE) that operates in a connected discontinuous reception (C-DRX) mode while in communication with wireless network are disclosed. A C-DRX warm-up period before the UE enters an on-duration is adjusted dynamically based on one or more factors including a time division duplex (TDD) uplink/downlink (UL/DL) subframe configuration, signal-to-noise ratio (SNR) values, and Doppler shift values. The C-DRX warm-up period is adapted based on the pattern of DL subframes in the UL/DL subframe configuration by including DL subframes that best contribute to channel estimation and adaptive tracking loops based on measured SNR and Doppler shift conditions. Favorable channel conditions, such as higher SNR and lower Doppler shift, can require fewer DL subframes and consequently shorter C-DRX warm-up periods. Higher Doppler shift values indicate more rapidly varying channel conditions and require DL subframes positioned closer to the start of the on-duration.
Abstract:
A wireless communication system is presented in which subframe-specific link adaptation is performed. A mobile device can transmit a signal that informs a base station whether a particular subframe was received successfully. Additionally the mobile device can calculate channel state information (CSI) for a subframe and report the CSI to a base station. The reported CSI may or may not include an indicator for informing the base station about from which type of subframe the CSI was derived. The base station can receive the signal, the CSI and/or the indicator. Based on what information the base station has received, it performs subframe-specific BLER filtering and subframe-specific link adaptation scheduling and MCS adjustments.
Abstract:
Methods and apparatus for network-based detection and mitigation of hybrid client device reception outage events. For example, in one embodiment, a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. During these tuned-away periods, the network adjusts operation to mitigate adverse effects (e.g., underutilization of radio resources, synchronization loss, etc.).