Abstract:
The present invention relates to a method for positioning multiple user equipments (UEs) by a base station in a wireless communication system supporting full-duplex communication and an apparatus therefor. More specifically, the present invention comprises: setting a unit distance on the basis of the magnitude of inter-device interference (IDI) with respect to a first UE; and establishing multiple boundaries around each of the multiple UEs and the base station according to relative distances on the basis of the unit distance and checking whether the boundaries overlap each other. Here, the relative distances indicate with respect to the multiple UEs, measured on the basis of the magnitude of inter-device interference (IDI).
Abstract:
A method for monitoring a downlink control channel in a wireless communication system and an apparatus for the method are disclosed. More specifically, a method for monitoring a downlink control channel of a user equipment (UE) in a wireless communication system comprises receiving, by the UE, configuration information of a first discontinuous reception (DRX) mode based on a first transmission time interval (TTI) and configuration information of a second DRX mode based on a second TTI from an evolved-NodeB (eNB); and monitoring, by the UE, a first downlink control channel in a first DRX listening interval within a first DRX cycle based on the configuration information of the first DRX mode and a second downlink control channel in a second DRX listening interval within a second DRX cycle based on the configuration information of the second DRX mode, wherein the second DRX cycle is set to be shorter than the first DRX cycle.
Abstract:
According to one embodiment of the present invention, a method by which a fixed base station adjusts inter-cell interference in a wireless communication system comprises the steps of: receiving channel state information-reference signal (CSI-RS) configurations on an access link of each moving cell connected to the fixed base station; determining the CSI-RS configuration on a backhaul link of a first moving cell among the moving cells on the basis of the CSI-RS configurations on the access link; and providing, to the first moving cell, the CSI-RS configuration on the determined backhaul link, wherein the CSI-RS configuration on the determined backhaul link is for measuring, by the backhaul link of the first moving cell, the interference received from an access link of a second moving cell among the moving cells.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. The method for a terminal to receive a signal in a wireless access system supporting an FDR, according to an embodiment of the present invention, comprises the steps of: measuring the inter-terminal interference between the terminal and candidate terminals; establishing a group of the terminal and a candidate terminal that has been selected due to the measured inter-terminal interference value; transmitting group information of the group to a base station; and receiving a signal by using resources allocated on the basis of the group information.
Abstract:
A method for performing communication by a user equipment (UE) in a UE-flexible Time Division Duplex (TDD) mode in a network configured to support the UE-flexible TDD mode in which a base station (BS) operates in a full duplex mode and the UE operates in a half duplex mode includes receiving information associated with a UE-flexible TDD mode support cell configured to support the UE-flexible TDD mode through a primary cell (PCell) from the base station (BS); and receiving a physical downlink shared channel (PDSCH) from the base station (BS) through the UE-flexible TDD mode support cell based on the information.
Abstract:
The present disclosure provides a method for transmitting and receiving data in a wireless communication system. Particularly, the method performed by a user equipment (UE) includes performing a measurement in a measurement gap; receiving a first indication information that instructs to report a mobility state of the UE from a base station (BS); transmitting a second indication information that represents a mobility state to the BS; receiving control information related to a configuration change of the measurement gap from the BS; and transmitting and receiving data for a specific service with the BS in whole or a specific section of the measurement gap based on the received control information, thereby satisfy the requirement of low latency/high reliability requested in 5G.
Abstract:
The present invention relates to a wireless communication system. In detail, the present invention is a method for transmitting data to a base station (BS) by a user equipment (UE) includes: receiving information on a contention-based Physical Uplink Shared Channel (PUSCH) zone including a plurality of contention-based PUSCH resource blocks from the base station (BS); allocating at least one contention-based PUSCH resource block for transmission of the data based on the information on contention-based PUSCH zone; and transmitting the data to the base station (BS).
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A method for a base station for allocating resources in a wireless access system supporting FDR according to an embodiment of the present invention comprises the steps of: receiving, from a terminal, information regarding whether or not the terminal is participating in a grouping in which a plurality of terminals are configured as a group for resource allocation; and determining whether or not to group and allocating resources on the basis of the information regarding whether or not participating, wherein the information regarding whether or not participating may comprise a first item of information indicating whether the terminal can operate in full duplex (FD) in the same resource, a second item of information indicating (FD) in the same resource, a second item of information indicating FD operation is not possible in the same resource but whether an FD operation of another apparatus is supported, and a third item of information indicating whether a participation in the grouping is requested.
Abstract:
A method for performing a Full-Duplex Radio (FDR) operation in a wireless communication system that supports the FDR is disclosed. The method includes exchanging FDR capability information that represents whether to have a capability of performing the FDR operation between a user equipment (UE) and a base station (BS); receiving, by the UE, Inter-Device-Interference (IDI) measurement configuration information from the BS; performing, by the UE, an IDI measurement based on the received IDI measurement configuration information; reporting, by the UE, a result of the IDI measurement to the BS; and receiving, by the UE, a control message notifying that the UE is included in a group related to the FDR operation from the BS, where the FDR capability information includes indication information that represents whether to support an FDR mode that transmission and reception operations are available to be performed simultaneously using an identical radio resource.
Abstract:
The method for performing a random access procedure by a user equipment in a network in which a plurality of communication systems interwork may comprise: establishing an association with an access point (AP) of a neighboring wireless LAN communication system if it is impossible to perform a direct uplink transmission to a cellular communication system of the plurality of communication systems or that the UE is located in an area where direct uplink transmission is not possible; transmitting, to the AP, a first message including a random access preamble sequence; receiving a second message from a eNode B of the cellular communication system in response to the first message; transmitting, to the AP, a third message including the received second message and a radio resource control (RRC) connection request; and receiving, from the eNode B, a fourth message related to an RRC connection setup in response to the third message.