Abstract:
The present invention includes a plurality of access points (APs); a plurality of user equipments (UEs); and a macro cell, wherein the macro cell is configured to receive feedback including a first matrix comprising connection information between identifiers of the plurality of APs and the plurality of UEs, generate a second matrix including information on a specific AP to be activated, the specific AP being determined on the basis of the first matrix, and broadcast the generated second matrix.
Abstract:
The present invention relates to a wireless communication system. A method by which a base station transmits a downlink signal in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: receiving first and second precoding matrix indicators (PMIs) from a terminal; determining a first matrix (W1) from a first codebook on the basis of the first PMI, determining a second matrix (W2) from a second codebook on the basis of the second PMI, and determining a precoding matrix (W) on the basis of the first matrix (W1) and the second matrix (W2); performing precoding by using the determined precoding matrix (W) at two or more layers to which a downlink signal is mapped; and transmitting a precoded signal to the terminal, wherein all precoding vectors included in the precoding matrix (W) have linear phase increment properties and can be orthonormal to one another.
Abstract:
The present invention relates to a method by which a terminal feeds back channel state information for downlink transmission in a wireless communication system supporting multiple antennas. More specifically, the present invention comprises a step of transmitting a first precoding matrix index (PMI) and a second PMI for each sub-band, wherein a precoding matrix preferred by the terminal is instructed to combine the first PMI and the second PMI, and a precoding codebook in which a portion of a plurality of bits forming the second PMI is additionally used to form the first PMI is applied.
Abstract:
The present invention relates to a method for transmitting a signal of a transmitting side in a wireless communication system that supports multiple antennas. More particularly, the method comprises the steps of: receiving, from a receiving side, feedback information for transmitting the signal of the transmitting side; and transmitting a signal to which a precoding matrix (W) is applied on the basis of the feedback information, wherein the precoding matrix (W) is expressed as a multiplication of two precoding matrices (W1 and W2), W1 is set to correspond to a plurality of antenna groups configured according to the feedback information, and W2 is configured such that the signal corresponding to the plurality of antenna groups can be transmitted in a mutual orthogonal way.
Abstract:
The present invention relates to a method for a transmitting end efficiently transmitting a signal in a wireless communication system supporting a multi-antenna and an apparatus for same. More particularly, the method comprises a step of transmitting a downlink signal based on a precoding matrix (W) for an antenna comprising a plurality of antenna elements aligned perpendicularly, wherein the precoding matrix (W) corresponds to a codebook configured so that phase increase is limited with respect to a plurality of precoding vector values populating a same column.
Abstract:
An antenna and a mobile terminal having the antenna are discussed. According to an embodiment, the antenna can include a flexible board having a first region and a second region; a high frequency antenna pattern formed in the first region of the flexible board to transceive a wireless signal by detecting a magnetic flux; a low frequency antenna pattern formed in the second region of the flexible board to generate an induced current; and a magnetic sheet stacked on one surface of the flexible board to simultaneously cover both of the high frequency antenna pattern and the low frequency antenna pattern, the magnetic sheet having a high magnetic permeability for both a high frequency and a low frequency.