Abstract:
Isoindoline derivatives represented by the formula (I) and their salts are disclosed. ##STR1## There are many varieties for the compound depending on the types of residues R.sup.1 -R.sup.9 and X. The compounds can be prepared from quinoline derivatives of the formula (II) and an isoindoline derivatives of the formula (III). The compounds of formula (I) and their salts have excellent antibacterial activities against both gram positive and gram negative microorganisms. They can be used as a medicine, an agrichemical, and a food preservative.
Abstract:
A temperature compensating circuit designed in two parts, a temperature-pulse width conversion circuit (X) and a temperature compensating circuit (Y.sub.N) permit the sharing of the temperature-pulse width conversion circuit by a plurality of temperature compensating circuits. Each temperature conversion circuit is relatively uncomplicated in construction, utilizing only resistors and a switch means. The temperature-pulse width conversion circuit utilizes a temperature sensitive element, like a thermistor, in a circuit with an operational amplifier. The output of the operational amplifier is supplied to a pulse width converter for generating the pulse width signal that carries the temperature compensation factor to be used in temperatures compensating the signal received by the temperature compensating circuit.
Abstract:
A film formation substrate is arranged such that (i) a base end, in a y-axis direction, of a film-thickness-gradually-diminishing part of a first film overlaps a first film formation region, and (ii) a film-thickness-gradually-diminishing part of a second film is disposed on an outside, in the y-axis direction, of a second film formation region and overlaps the film-thickness-gradually-diminishing part of the first film so as to compensate for a gradually diminished thickness of the film-thickness-gradually-diminishing part.
Abstract:
A vapor deposition source (60), a plurality of limiting plates (81) and a vapor deposition mask (70) are disposed in this order. A substrate spaced apart from the vapor deposition mask at a fixed interval is moved relative to the vapor deposition mask. Vapor deposition particles (91) discharged from vapor deposition source openings (61) of the vapor deposition source pass through between neighboring limiting plates, pass through mask openings (71) formed in the vapor deposition mask, and adhere to the substrate, whereby coating films (90) are formed. The limiting plates limit the incidence angle of the vapor deposition particles that enter the mask openings, as viewed in the relative movement direction of the substrate. In this way, an organic EL element can be formed on a large-sized substrate without increasing the pixel pitch or reducing the aperture ratio.
Abstract:
On a surface of a substrate (3) on which surface a vapor-deposited film is to be formed, a photoresist (13) is formed so as to have an opening in a sealing region including a display region (R1) which sealing region is formed by a sealing resin (11) of a frame shape. Then, luminescent layers (8R, 8G, and 8B) having a striped pattern are formed. Subsequently, the photoresist (13) is removed with the use of an exfoliative solution so as to form the luminescent layers (8R, 8G, and 8B) patterned with high definition.
Abstract:
Provided is a TFT substrate (10) on which vapor-deposited sections are to be formed by use of a vapor deposition device (50) which includes a vapor deposition source (85) having injection holes (86); and a vapor deposition mask (81) having opening (82) through which vapor deposition particles are deposited to form the vapor-deposited sections. The TFT substrate (10) includes pixels two-dimensionally arranged in a pixel region (AG); and wires (14) electrically connected to the respective pixels. The vapor-deposited sections (Q) are formed with gaps (X) therebetween, and the wires (14) having respective terminals that are disposed in the gaps (X).
Abstract:
A vapor deposition particle emitting device (30) includes a hollow rotor (40) provided with a first and a second nozzle sections (50 and 60), a rolling mechanism, and heat exchangers (52 and 62), and when the rolling mechanism causes the rotor (40) to rotate, the heat exchangers (52 and 62) switch between cooling and heating in accordance with placement of the nozzle section so that that one of the nozzle sections which faces outward has a temperature lower than a temperature at which vapor deposition material turns into gas and the other nozzle section has a temperature equal to or higher than the temperature at which the vapor deposition material turns into the gas.
Abstract:
In a method for manufacturing a light-emitting device according to an embodiment of the present invention, one surface of a first substrate including a reflective layer including an opening, a light absorption layer formed over the reflective layer to cover the opening in the reflective layer, a protective layer formed over the light absorption layer and including a groove at a position overlapped with the opening in the reflective layer, and a material layer formed over the protective layer and a deposition surface of a second substrate are disposed to face each other and light irradiation is performed from the other surface side of the first substrate, so that an EL layer is formed in a region on the deposition surface of the second substrate, which is overlapped with the opening in the reflective layer.
Abstract:
The vapor deposition particle injecting device (20) includes a crucible (22), a holder (21) having at least one injection hole (21a), and plate members (23 through 25) provided in the holder (21). The plate members (23 through 25) have respective openings (23a through 25a) corresponding to the injection hole (21a), and the plate members (23 through 25) are arranged away from each other in a direction perpendicular to the opening planes of the openings. The injection hole (21a) and the openings (23a through 25a) overlap each other in the plan view.
Abstract:
A vapor deposition particle injection device (30) includes a vapor deposition particle generating section (41), at least one nozzle stage made of an intermediate nozzle section (51), a vapor deposition particle emitting nozzle section (61), and heat exchangers (43, 63, 53). The vapor deposition particle emitting nozzle section (61) is controlled so as to be at a temperature lower than a temperature at which a vapor deposition material turns into gas. Meanwhile, the intermediate nozzle section (51) is controlled by the heat exchanger (53) so as to be at a temperature between a temperature of the vapor deposition particle generating section (41) and a temperature of the vapor deposition particle emitting nozzle section (61).