Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.
Abstract:
An integrated oscillator that may be used as a time clock includes circuitry that oscillates about an RC time constant, which RC time constant is adjustable to provide a desired frequency of oscillation. More specifically, the oscillator includes a capacitor array that has a plurality of capacitors coupled in parallel wherein each capacitor may be selectively included into the RC time constant or selectively excluded there from. Rather than setting the capacitance values to a desired capacitance value, a system for adjusting the time constant includes circuitry for measuring an output frequency and for comparing that to a certified frequency source wherein the time constant is adjusted by adding or removing capacitors from the capacitor array until the frequency of the internal clock matches an expected frequency.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A multi-band, voltage-controlled oscillator has a switching device that can be certainly be turned on and off. The oscillator includes a negative source generator coupled to an output of a buffer transistor from which an oscillation frequency of an oscillating transistor is released, a switching device for selectively switching between an output of the negative source generator and a positive power source, and a mode switching device receiving an output frequency switching signal from the outside. An output of the switching device controls an opening and short-circuiting operation of first switching device to selectively release oscillation outputs in a low frequency band and a high frequency band from an output port.
Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.
Abstract:
An integrated oscillator that may be used as a time clock includes circuitry that oscillates about an RC time constant, which RC time constant is adjustable to provide a desired frequency of oscillation. More specifically, the oscillator includes a capacitor array that has a plurality of capacitors coupled in parallel wherein each capacitor may be selectively included into the RC time constant or selectively excluded there from. Rather than setting the capacitance values to a desired capacitance value, a system for adjusting the time constant includes circuitry for measuring an output frequency and for comparing that to a certified frequency source wherein the time constant is adjusted by adding or removing capacitors from the capacitor array until the frequency of the internal clock matches an expected frequency.
Abstract:
In a voltage-controlled oscillator, a second variable capacitor circuit is provided in a variable capacitor circuit group, in addition to a first variable capacitor circuit having a first variable capacitor whose capacitance varies continuously in accordance with a frequency control signal. The second variable capacitor circuit has several second variable capacitors whose capacitances vary continuously in accordance with the frequency control signal and switching circuits that select the second variable capacitors in accordance with frequency band control signals. The oscillation frequency is changed only with the first variable capacitor in higher oscillation frequency bands. When the oscillation frequency is in lower oscillation frequency bands, the oscillation frequency band is changed also with the second variable capacitors. Accordingly, it is possible to ensure broad oscillation frequency bands, while reducing variations in the VCO gain in the entire oscillation frequency bands to a low level.
Abstract:
A voltage controlled oscillator having a wide oscillation frequency band, desirable carrier-noise characteristic, and desirable linearity of the oscillation frequency relative to a control voltage. The voltage controlled oscillator includes an oscillation unit and a control unit. The oscillation unit generates an output signal having an oscillation frequency corresponding to the control voltage in one of a plurality of oscillation frequency bands. The oscillation unit includes a switching unit for selecting one of the plurality of oscillation frequency bands in accordance with a switching signal. The control unit generates the switching signal in accordance with the control voltage.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.