Abstract:
A method and apparatus for allowing a UE to transmit uplink signals using a MIMO scheme are disclosed. In order to maintain good Peak power to Average Power Ratio (PAPR) or Cubic Metric (CM) properties when the UE transmits uplink signals using the MIMO scheme, the UE uses a preceding scheme based on a preceding matrix established in a manner that one layer is transmitted to each antenna in specific rank transmission.
Abstract:
A method of transmitting scheduling information in time-division-duplex (TDD) system is provided. The method comprises configuring a radio frame, the radio frame comprising at least one downlink subframe and at least one uplink subframe, wherein a downlink subframe is reserved for downlink transmission and an uplink subframe is reserved for uplink transmission, and transmitting scheduling information on a downlink control channel in a downlink subframe, the scheduling information comprising an uplink indicator and uplink resource assignment, the uplink indicator indicating which at least one uplink subframe the uplink resource assignment is valid for. Data can be efficiently transmitted by using an uplink indicator which indicates a specific location of a subframe.
Abstract:
A method and apparatus of transmitting a reference signal in a wireless communication system is provided. The method includes generating a precoded reference signal or a non-precoded reference signal in accordance with a rank, and transmitting the generated reference signal. Uplink transmission using multiple transmit antennas is supported through reference signal design and related control signaling.
Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-subframe PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.
Abstract:
A method for transforming data to reduce an amount of data in a communication system equipped with several sub-carriers, and a data transmission method using the same are disclosed. The method for transmitting data using a Discrete Cosine Transform (DCT) in a communication system based on a plurality of sub-carriers includes: a) performing a Discrete Cosine Transform (DCT) on first data; b) selecting a predetermined number of data from among the DCT-processed first data, and performing data processing on the selected data; and c) transmitting the data-processed resultant data to a reception end. A method for reducing an amount of overhead of transmission data for use in the multi-antenna communication system is disclosed.
Abstract:
A method for efficiently transmitting and receiving control information through a Physical Downlink Control Channel (PDCCH) is provided. When a User Equipment (UE) receives control information through a PDCCH, the received control information is set to be decoded in units of search spaces, each having a specific start position in the specific subframe. Here, a modulo operation according to a predetermined first constant value (D) is performed on an input value to calculate a first result value, and a modulo operation according to a predetermined first variable value (C) corresponding to the number of candidate start positions that can be used as the specific start position is performed on the calculated first result value to calculate a second result value and an index position corresponding to the second result value is used as the specific start position. Transmitting control information in this manner enables a plurality of UEs to efficiently receive PDCCHs without collisions.
Abstract:
A channel coding method of variable length information using block code is disclosed. A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A−10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
An apparatus for use in a base station includes processing circuitry coupled to a memory. To configure the base station for channel access in a New Radio (NR) unlicensed (NR-U) network operating in an unlicensed spectrum, the processing circuitry is to perform an LBT procedure for a transmission occasion of a plurality of transmission occasions within a Discovery Measurement Timing Configuration (DMTC) window of a communication channel in the unlicensed spectrum. The transmission occasion is configured within a slot of a plurality of slots forming the DMTC window. A Discovery Reference Signal (DRS) is encoded for transmission to a UE on the communication channel, based on the successful completion of the LBT procedure. The DRS includes a PSS, a SSS, and a PBCH. A RACH procedure is performed with the UE, the RACH procedure initiated based on the PSS, the SSS, and the PBCH.