Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol. Also provided herein are methods for using such an organism to produce 1,2-propanediol, n-propanol, 1,3-propanediol or glycerol.
Abstract:
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
Abstract:
A non-naturally occurring microbial organism having an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway includes at least one exogenous nucleic acid encoding an isopropanol, 4-hydroxybutryate, or 1,4-butanediol pathway enzyme expressed in a sufficient amount to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol. The aforementioned organisms are cultured to produce isopropanol, 4-hydroxybutryate, or 1,4-butanediol.
Abstract:
A non-naturally occurring microbial organism includes a microbial organism having a reductive TCA or Wood-Ljungdahl pathway in which at least one exogenous nucleic acid encoding these pathway enzymes is expressed in a sufficient amount to enhance carbon flux through acetyl-CoA. A method for enhancing carbon flux through acetyl-CoA includes culturing theses non-naturally occurring microbial organisms under conditions and for a sufficient period of time to produce a product having acetyl-CoA as a building block. Another non-naturally occurring microbial organism includes at least one exogenous nucleic acid encoding an enzyme expressed in a sufficient amount to enhance the availability of reducing equivalents in the presence of carbon monoxide or hydrogen, thereby increasing the yield of redox-limited products via carbohydrate-based carbon feedstock. A method for enhancing the availability of reducing equivalents in the presence of carbon monoxide or hydrogen includes culturing this organism for a sufficient period of time to produce a product.
Abstract:
The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
Abstract:
The disclosure relates to enzyme variants with improved ester synthase properties for the production of fatty acid esters. Further contemplated are recombinant host cells that express such variants, cell cultures comprising the recombinant host cells and fatty acid ester compositions produced by such recombinant host cells.
Abstract:
Described herein are engineered cells including ones having synthetic methylotrophy which include an NADH-dependent enzyme capable of converting G3P to 3PG (e.g., B. methanolicus gapN) and/or fructose-1,6-bisphosphatase, along with hexulose-6-phosphate synthase, 6-phospho-3-hexuloisomerase, a phosphoketolase, or a combination thereof. Engineered cells of the disclosure beneficially maintain adequate pool sizes of phosphorylated C3 and/or C4 compounds, and/or provide increased levels of NADPH. As such, the modifications allow for the generation of C6 compounds from C1 (e.g., a methanol feedstod) and C5 compounds, the regeneration of C5 compounds from C6 compounds by carbon rearrangement, and an improved balance between regeneration of C5 compounds and lower glycolysis. In turn, this allows the engineered microorganism to generate sufficient quantities of metabolic precursors (e.g., acetyl-CoA) which can be used in a bioproduct pathway, and the engineered cells can include further modifications to those pathway enzymes allowing for production of a desired bioproduct.
Abstract:
Methods of recovering cannabinoids from cell cultures include methods comprising steps of separating the cell culture at a temperature above the melting point of the cannabinoid to separate a light phase comprising liquid state cannabinoid from a heavy phase; and methods comprising treating the cell culture at a temperature below the melting point of the cannabinoid to separate a light phase from a heavy phase comprising solid state cannabinoid. Other methods include contacting the culture with a water-miscible solvent to form a water-miscible phase and an aqueous phase, separating the two phases and recovering the cannabinoid. Other methods include contacting the culture with a water-immiscible solvent to form a water-immiscible phase and an aqueous phase, separating the two phases, and recovering the cannabinoid. Other methods include washing the inner surface of a fermentation vessel with alkaline solution to recover cannabinoid attached to the vessel surface. Various methods make use of aqueous solvent systems comprising no organic solvent, aqueous solvent systems comprising added water-miscible organic solvent, and dual-phase aqueous/water-immiscible solvent systems.
Abstract:
The disclosure provides embodiments directed to a composition comprising a 1,3-butylene glycol (1,3-BG; such as but not limited to, bioBG) and one or more fragrance ingredients, which form a fragrance component of the composition. 1,3-BG demonstrates exemplary qualities and characteristics of being natural, sustainable, and substantially non-odorous, for use in fragrance compositions. Methods of using or applying such 1,3-BG fragrance compositions provide a cost-efficient, sustainable composition, since 1,3-BG does not mask or alter the fragrance notes of the fragrance ingredients allowing for the use of smaller quantities of fragrance ingredients. The 1,3-BG fragrance compositions of the disclosure also improve fragrance performance and reduces greenhouse gases, while avoiding any irritation, sensitization, or allergic reaction in humans.
Abstract:
Provided herein are bioderived 1,3-butanediol compositions and systems and processes for producing such bioderived 1,3-butanediol compositions.