Abstract:
A method for fabricating a liquid crystal display device including a TFT substrate having an alignment film formed thereon, an opposing substrate, and a liquid crystal layer sandwiched therebetween. The alignment film on the TFT substrate includes a photolytic polymer made from a first precursor including cyclobutane, and a non-photolytic polymer made from a second precursor. The method includes the steps of depositing a mixture material including the first precursor and the second precursor in which the second precursor settles more on an upper surface of the TFT substrate than the first precursor, imidizing the mixture material, and irradiating the mixture material with ultraviolet light for photo-alignment, and after irradiating, heating the mixture material to form the alignment film.
Abstract:
A back light unit includes a light guide plate having at least one light introducing portion and a light exit portion, the front surface of the light exit portion being a light exit surface, and a light source facing the light guide plate and emitting light in a light emitting direction. The at least one light introducing portion includes a first portion and a second portion which is connected to the light exit portion, and in which the second portion spreads wider than the first portion in plan view.
Abstract:
A backlight includes light emitting diodes; a substrate on which light emitting diodes are mounted; and a reflection sheet. The surface on which the light emitting diodes are mounted of the substrate is opposed to a rear surface of the liquid crystal display panel. The liquid crystal display panel and the substrate each have a shape in which a common width in a first direction is longer than a width in a second direction, which is orthogonal to the first direction. The width of the substrate in the second direction is shorter than the width of the liquid crystal display panel in the second direction. The substrate is opposed to, while avoiding being opposed to both end portions of the liquid crystal display panel in the second direction, a central portion between the both end portions of the liquid crystal display panel.
Abstract:
A driving circuit for driving a display panel includes a dynamic ratioless shift register which is operated in a stable manner and can expand the degree of freedom of design. In the dynamic ratioless shift register which is provided with thin film transistors having semiconductor layers made of p-Si on a substrate surface, a node which becomes the floating state is connected to a fixed potential through a capacitance element.
Abstract:
A method for fabricating a liquid crystal display device having a TFT substrate in which an alignment film is formed over a pixel including a pixel electrode and a TFT, an opposing substrate which faces the TFT substrate, and liquid crystals sandwiched between the TFT substrate and the opposing substrate, the alignment film on the TFT substrate including a first and a second alignment film. The method includes depositing a mixture liquid of polyamide acid ester, 80 percent or more of which is polyamide acid ester including cyclobutane, and polyamide acid not including cyclobutane onto the TFT substrate and the opposing substrate, and after drying and firing the TFT substrate and the opposing substrate to harden the alignment film, irradiating the alignment film with ultraviolet light for photo-alignment of the alignment film and, thereafter, heating the TFT substrate and the opposing substrate, thereby forming the alignment film.
Abstract:
A thin-film transistor device includes: a gate electrode above a substrate; a gate insulating film on the gate electrode; a crystalline silicon thin film including a channel region which is provided on the gate insulating film; semiconductor films on at least the channel region; an insulating film made of an organic material which is provided over the channel region and above the semiconductor films; a source electrode over at least an end portion of the insulating film; and a drain electrode over at least the other end portion of the insulating film and facing the source electrode. The semiconductor films include at least a first semiconductor film and a second semiconductor film provided on the first semiconductor film. A relationship ECP
Abstract:
A liquid crystal display device includes first and second substrates with liquid crystal sandwiched therebetween. A first blue, a red, a green, and a second blue color filters are disposed between the first substrate and the second substrate, and arranged in a first direction. First to third light blocking films are respectively disposed between the first blue and the red color filters, between the red and the green color filters, and between the green and the second blue color filters. A distance Lr between a first central line of a part of the first light blocking film and a second central line of a width the second light blocking film is larger than a distance Lg between the second central line and a third central line of a width of the third blocking film.
Abstract:
A liquid crystal display device includes first and second substrates with a liquid crystal therebetween, a thin film transistor on the first substrate, a color filter layer of different colored layers between the liquid crystal and the thin film transistor, and an electrode structure layer between the liquid crystal and the color filter layer. The electrode structure layer includes a transparent insulating film, and first and second transparent conductive films formed on opposite sides of the transparent insulating film. The color filter layer includes a first region formed of one colored layer, and a second region formed of at least two laminated different colored layers. The first transparent conductive film covers an upper surface of the color filter layer in both of the first and second regions.
Abstract:
The present invention relates to a technique which makes a backlight used in a liquid crystal display device thin and light-weight. The present invention provides a liquid crystal display device which includes a display panel and a backlight arranged behind the display panel, wherein the backlight includes a film-like light guide member, a film-like light semi-transmissive member adhered to a first surface of the light guide member which faces the display panel in an opposed manner, a film-like reflective member adhered to a back surface of the light guide member opposite to the first surface, and a spot light source arranged at a position of the light guide member at which light is incident on the light guide member from the first surface or the back surface. A refractive index of the light semi-transmissive member is set smaller than a refractive index of the light guide member.
Abstract:
A liquid crystal display device which includes one image signal line which is connected to a plurality of pixels, a scanning line drive part which outputs an ON voltage to the respective pixels in a predetermined order, and a data line drive part which outputs image signal voltages. The data line drive part outputs a gray level signal voltage corresponding to a gray level value of the pixel as an image signal voltage in a first period, and outputs a correction gray level signal voltage different from the gray level signal voltage as an image signal voltage in a second period which precedes the first period. The liquid crystal display device further includes a control part which generates the correction gray level signal voltage based on the gray level value of the pixel and one or plurality of gray level values of pixels which precede the pixel in order.