Abstract:
One or more wireless stations may operate to configure direct communication with neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. A mechanism for wireless stations to pair with neighboring wireless stations to establish secured data connections may include establishing a peer-to-peer data communication session, obtaining device pairing information via an out-of-band (OOB) mechanism, and exchanging device pairing information via transmission management frames to authenticate the peer device. A PTK based on the device pairing information may be installed to protect data frames exchanged at a MAC layer of the wireless station and a session key may be installed to protect data frames exchanged at higher layers.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with one or more neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to a mechanism for a wireless station to transmit a pause indication to one or more neighboring peer wireless stations, indicating a pause in direct communication.
Abstract:
An apparatus and methods are provided for initiating a network connection between a first device and a second device. While one or more high-power network interfaces of the first device are in a dormant state, the first device communicates with a second device via the first device's low-power network interface. The first device can determine, based on the communication, whether to establish a network connection with the second device via a high-power network interface of the first device. Next, if the first device is to establish the network connection with the second device via the high-power network interface, the device can wake the first high-power network interface and connect to the second device via the first high-power network interface.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to a mechanism for a device to perform multicast communications amongst a group of peer devices. Embodiments described herein provide mechanisms for initiation (or establishment) and scheduling of a multicast group as well as enrollment of a device into a multicast group, merging of multicast groups, and termination of multicast groups.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to a mechanism for a device to transmit, via a BTLE (or Bluetooth) interface, a first message indicating an operation associated with a Wi-Fi service (e.g., a service available via a Wi-Fi interface and/or Wi-Fi related interface parameters) to a peer device. The first message may include a service hash that indicates the operation. The service hash may be included in a first data structure. The first data structure may indicate availability of the Wi-Fi service. The device may receive a second message from the peer device indicating that the neighboring wireless station intends to subscribe to or provide the Wi-Fi service, e.g., via Wi-Fi peer-to-peer communications.
Abstract:
Embodiments described herein relate to providing reduced power consumption in wireless communication systems, such as 802.11 WLAN systems. Timing information regarding power save opportunities (PSOPs) may be provided in communication frames, which may inform mobile devices of expected frame exchange periods during which they may transition to a Doze state. Additional PSOP information may be included in beacon frames, which may inform mobile devices of expected multicast periods during which they may transition to a Doze state. This may operate to provide improvements in terms of power consumption.
Abstract:
In some embodiments, one or more wireless stations operate according to Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to triggering a NAN datapath using Bluetooth low energy (BLE) signaling. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate to establish a Wi-Fi connection via non-Wi-Fi signaling and provide services. Aspects of the datapath development include Wi-Fi connection establishment and datapath initiation. The datapath model may be implemented for unicast and/or multicast communication between wireless stations, including mobile stations.
Abstract:
In embodiments, a wireless device, such as a Wi-Fi device, transmits communication signals on secondary channels within an operational bandwidth of a wireless network, concurrent with a transmission from another wireless device on a primary channel. The wireless device may detect that a first frequency band within an operating bandwidth of a wireless network is occupied by a first transmission transmitted by a second wireless device, and determine that a second, different frequency band within the operating bandwidth of the wireless network is not occupied. In response, the wireless device may transmit a second transmission occupying the second frequency band concurrent with the first transmission. The wireless device may set a duration of the second transmission based at least in part on a determination of whether the second wireless device is configured to assess the state of all frequency bands within the operating bandwidth before beginning a subsequent transmission.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., without utilizing an intermediate access point. Embodiments relate to scheduling of NAN ranging procedures, including to a first wireless station sending first information, including first scheduling preferences and a first ranging role, to a second wireless station. The first wireless device receives second information, including second scheduling preferences and a second ranging role, from the second wireless device. The first wireless station may initiate the ranging procedure based on the scheduling preferences and ranging parameters. Alternatively, the second wireless station and may initiate the ranging procedure based on the scheduling preferences and ranging parameters.
Abstract:
In some embodiments, a first wireless device initializes a first threshold and sends a first frame transmission to a second wireless device. When the first wireless device determines that the first frame transmission was successful, it adjusts the first threshold to a second threshold that is greater than the first threshold. Additionally, when the first wireless device determines that the first frame transmission was not successful, the first wireless device adjusts the first threshold to a third threshold that is less than the first threshold. The thresholds can be associated with any measure, including carrier sensitivity and/or energy detection.