Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate includes a curved portion relative to the substrate. The curved portion is substantially throughout the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package.
Abstract:
A method for providing a medical service in a therapeutic area requested by a client. In one embodiment, the method includes the step of defining a plurality of offerings associated with the medical service in the therapeutic area. At least one service category is associated with each of the offerings. At least one activity is associated with each of the service categories. At least one tool is associated with each of the activities. The method further includes the step of associating the offerings, the activities, the service categories and the tools with a respective plane of a hypercube. In response to the medical service, at least one location in the hypercube, which represents the offering, service category, activity and tool required to provide the medical service, is identified.
Abstract:
Disclosed herein are methods and systems for testing the electrical characteristics of reflective displays, including interferometric modulator displays. In one embodiment, a controlled voltage is applied to conductive leads in the display and the resulting current is measured. The voltage may be controlled so as to ensure that interferometric modulators do not actuate during the resistance measurements. Also disclosed are methods for conditioning interferometric modulator display by applying a voltage waveform that causes actuation of interferometric modulators in the display.
Abstract:
A light modulator is arranged as array of rows and columns of interferometric display elements. Each element is divided into sub-rows of sub-elements. Array connection lines transmit operating signals to the display elements, with one connection line corresponding to one row of display elements in the array. Sub-array connection lines electrically connect to each array connection line. Switches transmit the operating signals from each array connection line to the sub-rows to effect gray scale modulation.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
Embodiments of an exemplary MEMS interferometric modulator comprise a movable layer and a fixed layer separated by an air gap. A driving scheme employs row/column actuation protocols which maintain voltages to the MEMS interferometric modulator that are above or below the voltage range necessary to place the MEMS interferometric modulator within a “hysteresis window” or “stability window.” Stable operation of the MEMS interferometric modulator is achieved by selecting mechanical design features that optimize the actuation and release times of the interferometric modulator. Some of the features affecting the release and actuation times include altering post spacing, altering internal stress or tension of the movable layer, altering the thickness or composition of the movable layer, altering the bulkiness of the tethers, perforating the movable layer and providing vias in the fixed layer.
Abstract:
Methods and systems for packaging MEMS devices such as interferometric modulator arrays are disclosed. One embodiment of a MEMS device package structure includes a seal with a chemically reactant getter. Another embodiment of a MEMS device package comprises a primary seal with a getter, and a secondary seal proximate an outer periphery of the primary seal. Yet another embodiment of a MEMS device package comprises a getter positioned inside the MEMS device package and proximate an inner periphery of the package seal.
Abstract:
Certain embodiments of the invention provide a light sensor comprising at least one interferometric element that absorbs light in at least one wavelength. The interferometric element comprises a first surface and a second surface substantially parallel to the first surface. The second surface is spaced a gap distance from the first surface in a direction substantially perpendicular to the first surface. The light wavelength absorbed is dependent on the gap distance. The interferometric element further comprises a temperature sensor. The temperature sensor is responsive to changes in temperature of at least a portion of the interferometric element due to absorption of light by the interferometric element.
Abstract:
The invention provides a test device or “phantom” for use in conjunction with medical imaging modalities. The phantom mimics the properties of joint particular cartilage. The phantom is useful for quality assurance of images of joints obtained using an array of medical imaging modalities.
Abstract:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.