Abstract:
A portable oxidant generator for generating a chlorine or chlor-oxygen solution suitable for sterilizing contaminated drinking water, thereby providing a water disinfection system and potable water. The oxidant generator includes an electrolytic chamber and a power supply or source. The chamber holds a salt brine solution such that the solution is in contact with an anode and cathode included in the chamber. The power supply provides electrical charge that is passed between the anode and cathode through the salt brine solution. In the preferred embodiment of the present invention, a combination manual pump/switch is activated and injects electrolyte into the cell chamber and electrolyzes the solution. In one embodiment, as electrolysis proceeds, hydrogen gas is liberated and causes a gas pressure within the cell chamber thereby forcing the freshly generated oxidant solution from the cell. In another embodiment, as electrolysis proceeds, hydrogen gas is liberated and causes gas pressure within the sealed cell chamber which acts against a spring loaded piston thereby increasing the chamber volume to minimize pressure buildup, and to maintain the electrolyte in contact with the anode and cathode throughout the electrolysis process irrespective of the orientation of the device. When electrolysis is complete, an electric valve is actuated that allows the freshly produced oxidant to be discharged in to the drinking container to provide disinfection and render the water potable.
Abstract:
An improved apparatus and operating method related thereto for deionizing water to produce substantially pure water using electric field and ion exchange materials are disclosed, including embodiments incorporating one or more of the novel features of brine and electrode streams flowing in a direction counter-current to the stream being deionized, a filling of the brine stream with stratified ion exchange materials, a stream mixing feature for mixing the stream being deionized, a gas removal feature for removal of gases, a spiral-wound embodiment of an electrodialysis device according to the invention, and a method for determining the preferred operating current for electrodialysis systems according to this invention.
Abstract:
A biocidal solution is provided having a pH of from 5 to 7 and an available free chlorine content of from 500 to 1,000 ppm. A method is also provided for producing the biocidal solution in an electrolytic cell or cells having anode and cathode chambers which produce respective anolyte and catholyte solutions, wherein the biocidal activity of the biocidal solution is conferred on the solution primarily in the anode chamber. The method includes the steps of supplying the cell or cells with a solution having a salt concentration of 2.0 to 5.0 g/L, such that the solution passes through the anode chamber at a flow rate per anode surface area of 1.25null103 to 2.75null103 L hrnull1mnull2, and applying current to the cell or cells sufficient to produce a biocidal solution having the above free chlorine content and pH.
Abstract:
An apparatus for treating a flow of water containing contaminants includes first and second permeable electrodes and a power supply is coupled to each of the first and second permeable electrodes to create an electrical potential therebetween. The first and second permeable electrodes are disposed within the flow of water containing contaminants with the first permeable electrode upstream from the second permeable electrode and the water containing contaminants flowing through and between the permeable electrodes. The permeable electrodes are spaced a select distance to promote an electric current in the water containing contaminants between the electrodes sufficient to sustain oxidation or reduction of the contaminants in the vicinity of the electrodes. The electrodes are preferably substantially planar plates disposed in parallel and substantially normal to the direction of water flow. The distance between the plates is between about 0.001 and 1 meter. The electrodes are preferably made of a conductive material selected from the group including carbon black, vitreous carbon, graphite, stainless steel, aluminum, copper, gold and gold plated stainless steel.
Abstract:
A system is provided for removing dissolved metals from industrial wastewater by electrocoagulation. The system includes an electrocoagulation reactor with a DC power supply having an insulation support enclosure with positive and negative electrode plates disposed thereon. The electrode plates are insulated for each other but remain in direct contact with the wastewater as it flows between the electrodes. The DC power supply induces opposite charges on alternate electrodes thereby generating an electric field between adjacent electrodes to cause the electrodes to ionize and go into solution for interaction with the contaminants in the wastewater as it flows through the reactor. The reactor is housed in a pressure vessel container so the exterior pressure on the reactor is higher than its internal pressure preventing leakage of fluids and oxygen and hydrogen gases produced in the reactor by decomposition of water. The pressure vessel allows higher operating pressures to retain higher concentrations of dissolved oxygen and hydrogen dispersed in the water for reaction with the contaminants. The electrical supply includes explosion proof connection housings for operation in hazardous environments. The system also includes a cyclone filter for separating the precipitated solid particles from the fluid and automatic control of the reactor by monitoring fluid flow, temperature, pH, and pressure.
Abstract:
The invention relates to a device for the decontamination of water, particularly of heavy metals and/or arsenic and/or their compounds, by means of electrolysis, wherein the water to be purified is fed through a receptacle and passes by electrodes of different polarities. According to the invention, a combination of electrodes made from iron, aluminium, and graphite, or from aluminium and graphite, is used. Facing the direction of the receptacle bottom, the undersides of the electrodes are contained in groove-like, electrically insulated recesses that are spaced apart and separated from one another on their opposite side by single electrically insulating spacers, wherein the spacers are attached to the electrodes, and the electrodes, which can be unfolded, are arranged in the groove-like recesses.
Abstract:
A stream of process liquid is treated while flowing through in a horizontally elongated chamber having an open top. Longitudinally elongated electrode blades are aligned with the longitudinal dimension of the chamber. An overhead disbursement chamber supplies a sweeping air stream over the open top of the chamber for removing foam and gas reaction by-products. The electrode blades are separated and held at a desired spacing by small portable guides located below and above the blades.
Abstract:
A system is provided for removing dissolved metals from industrial wastewater by electrocoagulation. The system includes an electrocoagulation reactor with a DC power supply having an insulation support enclosure with positive and negative electrode plates disposed thereon. The electrode plates are insulated for each other but remain in direct contact with the wastewater as it flows between the electrodes. The DC power supply induces opposite charges on alternate electrodes thereby generating an electric field between adjacent electrodes to cause the electrodes to ionize and go into solution for interaction with the contaminants in the wastewater as it flows through the reactor. The reactor is housed in a pressure vessel container so the exterior pressure on the reactor is higher than its internal pressure preventing leakage of fluids and oxygen and hydrogen gases produced in the reactor by decomposition of water. The pressure vessel allows higher operating pressures to retain higher concentrations of dissolved oxygen and hydrogen dispersed in the water for reaction with the contaminants. The electrical supply includes explosion proof connection housings for operation in hazardous environments. The system also includes a cyclone filter for separating the precipitated solid particles from the fluid and automatic control of the reactor by monitoring fluid flow, temperature, pH, and pressure.
Abstract:
A method and system for electrolysis of water to increase the dissolved oxygen content, raise oxidation reduction potential, and perform direct oxidation of dissolved contaminants in situ. This is accomplished by an electrolytic catalytic oxidation (ECO) cell having an innovative configuration of electrodes in a cartridge designed to maximize water contact with an efficiently designed affecting system. The cartridge consisting of multiple mesh electrodes arranged transversely to imposed water flow electrolyzes passing water when energized. The mesh construction of the electrodes allows water flow to be essentially through the electrodes, with a narrow gap set up between cathode and anode to reduce voltage requirements of the system. The cartridge anodes are preferably plated with a mixed metal oxide such as iridium oxide and ruthenium oxide to catalytically improve the production of oxygen. The electrode cores are constructed of titanium, combining low electrical resistance with low activity, reducing metal loss during system operation.
Abstract:
A portable oxidant generator for generating oxidants suitable for sterilizing contaminated drinking water, thereby providing potable water. The oxidant generator optionally comprises an electrolytic cell and a power supply or source for powering the generator. In a preferred embodiment, the cell holds an electrolyte solution such that the solution contacts an anode and a cathode. The power supply provides electrical charge that is passed to the electrolyte solution and/or other electrolyte substance. In a preferred embodiment of the present invention, the power supply includes an energy storage device that is charged to predetermined voltage. The energy storage device is preferably charged by a generator that converts mechanical energy into electrical energy. The present invention optionally includes an electrolyte storage compartment in the cap. The present invention also optionally includes a total dissolved solids measuring device to determine if the water to be treated requires reverse osmosis filtration to remove high concentrations of ions the water to be treated.