Abstract:
Disclosed herein are methods and systems of scanning a target for potential threats using the energy spectra of photons scattered from the target to determine the spatial distributions of average atomic number and/or mass in the target. An exemplary method comprises: illuminating each of a plurality of voxels of the target with a photon beam; determining an incident flux upon each voxel; measuring the energy spectrum of photons scattered from the voxel; determining, using the energy spectrum, the average atomic number in the voxel; and determining the mass in the voxel using the incident flux, the average atomic number of the material in the voxel, the energy spectrum, and a scattering kernel corresponding to the voxel. An exemplary system may use threat detection heuristics to determine whether to trigger further action based upon the average atomic number and/or mass of the voxels.
Abstract:
A vertical/horizontal small angle X-ray scattering apparatus, for enabling plural numbers of X-ray diffraction measurements, such as, transmission small angle X-ray diffraction, reflection small angle scattered X-ray diffraction, and in-plane X-ray diffraction, etc., comprises an X-ray generating apparatus 11 for generating X-ray, an optic system 16 for forming the X-ray into a predetermined incident beam of X-ray, a sample holder portion 120 for mounting a sample to be measured thereon, to irradiate the incident beam of X-ray thereupon, a vacuum path 17 for passing through small angle scattered X-ray from the sample, and an X-ray detector 18 for detecting the small angle scattered X-ray passing through the vacuum path, wherein the sample holder portion is fixed on a support base 110, while attaching the X-ray generating apparatus, the optic system, the vacuum path and the X-ray detector on a bench 100, as well, to be rotatable around the sample holder portion, and thereby enabling plural numbers of measurements of small angle X-ray scattering.
Abstract:
An apparatus and method for inspecting personnel or their effects. A first and second carriage each carries a source for producing a beam of penetrating radiation incident on a given subject. A positioner provides for relative motion of each beam vis-à-vis the subject in a motion, the vertical component of which is one-way. A detector receives radiation produced by at least one of the sources after the radiation interacts with the subject.
Abstract:
Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.
Abstract:
Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.
Abstract:
Disclosed herein are methods and systems of scanning a target for potential threats using the energy spectra of photons scattered from the target to determine the spatial distributions of average atomic number and/or mass in the target. An exemplary method comprises: illuminating each of a plurality of voxels of the target with a photon beam; determining an incident flux upon each voxel; measuring the energy spectrum of photons scattered from the voxel; determining, using the energy spectrum, the average atomic number in the voxel; and determining the mass in the voxel using the incident flux, the average atomic number of the material in the voxel, the energy spectrum, and a scattering kernel corresponding to the voxel. An exemplary system may use threat detection heuristics to determine whether to trigger further action based upon the average atomic number and/or mass of the voxels.
Abstract:
The computer-implemented method for inspection of a sample includes defining a plurality of locations on a surface of the sample, irradiating the surface at each of the locations with a beam of X-rays, and measuring an angular distribution of the X-rays that are emitted from the surface responsively to the beam, so as to produce a respective plurality of X-ray spectra. The X-ray spectra are analyzed to produce respective figures-of-merit indicative of a measurement quality of the X-ray spectra at the respective location. One or more locations are selected out of the plurality of locations responsively to the figures-of-merit, and a property of the sample is estimated using the X-ray spectra measured at the selected location.
Abstract:
An X-ray scattering chamber 12 includes a housing 14 that may be mounted in X-ray diffraction equipment between an X-ray source 2 and an X-ray detector 4, for example on goniometer arm 6. The housing 14 includes sample holder 16 and beam conditioning optics 22,24, but the system also makes use of primary optics 10 outside the housing. The equipment is suitable for SAXS and/or SAXS-WAXS.
Abstract:
Conventional CSCT may require a complex reconstruction involving a large number of calculations. According to an exemplary embodiment of the present invention, additional collimators are used in combination with energy revolving detectors, which may allow that a CSCT image may be reconstructed by a simple superposition of images obtained from different viewing angles in a direct tomography data acquisition scheme. Advantageously, a reconstruction may be avoided. Advantageously, this may allow for an improved image quality while reducing an amount of calculations required for generating the output image.
Abstract:
One aspect relates to visualizing, imaging, or providing information at least partially through at least some matter of an at least a portion of an individual, based at least in part on Compton scattering to at least partially form scattered X-rays, the Compton scattering occurring primarily in the at least some matter of the at least the portion of the individual, wherein the visualizing, imaging, or providing information is at least partially performed by converting the scattered X-rays into an at least one scintillated viewable and/or visible light that is detectable by a user. Another aspect relates to Compton scattered X-ray based visualizing, imaging, or providing information of an at least some matter of an at least a portion of an at least one individual to allow the at least one individual and/or an untrained assistant to at least partially visualize, image, or provide information into the at least some matter of the at least the portion of the individual based at least partially on Compton scattered X-rays.