Abstract:
Apparatus, and an associated method, for generating a message summary field. The message summary field indicates whether 802.11-formatted data packets are communicated upon a frequency range to which a mobile station operable in an IEEE 802.11 radio communication system is tuned. An indicator indicates whether an 802.11 data packet is detected. And, a reporter generates a measurement summary which includes a measurement summary field populated with a value indicating the determination. Subsequent analysis of the value of the field of the measurement summary is utilized pursuant to dynamic frequency selection operations.
Abstract:
A received frame is provided to a first decoder and a first time reverse unit. The first decoder decodes the provided frame and outputs the decoded frame. The first time reverse unit reverses bits of the provided frame in time direction and outputs the time reversed frame. The time reversed frame is provided to a second decoder. The second decoder decodes the time reversed frame. This decoded frame is then provided to a second time reverse unit. The second time reverse unit reverses bits of the decoded frame in time direction and outputs the frame. The frame is outputted from the first decoder is compared with the frame is outputted from the second time reverse unit by comparator. If any difference exist between the two frames then the received frame is judged as unreliable.
Abstract:
Focused error correction and/or focused error detection is used in the information coding system. A speech encoding method, in which the number of speech parameter bits on which error correction coding and/or error detection coding focuses is automatically adjusted in relation to the number of total speech parameter bits as a function of the quality of the information transfer connection. There is no need to reduce the number of bits used for speech encoding. Thus the voice quality of the speech remains high. The error correction and/or error detection is focused on the bits most important for the voice quality e.g., as a function of the C/I (Channel to Interference)13 parameter describing the quality of the information transfer connection. The muting of speech synthesizing occuring in prior systems on poor information transfer connection is reduced by using focused error detection.
Abstract:
A multi-rate data receiver includes a decoding section for processing the received encoded data symbols via multiple paths to make a determination as to the rate of the received data. A statistical analysis is made of the incoming data prior to decoding, and rate selection made among one of the multiple highest rates. If the determination is not that the data is associated with the highest rate, the data is processed through multiple parallel decoding paths and the decoded data on the output thereof evaluated to determine which of the multiple paths is acceptable and associated with the incoming data rate.
Abstract:
Focused error correction and/or focused error detection is used in the information coding system according to the invention. The purpose of the present invention is to present a speech encoding method, in which the number of speech parameter bits on which error correction coding and/or error detection coding focuses is automatically adjusted in relation to the number of total speech parameter bits as the function of the quality of the information transfer connection. In the information encoding system according to the invention there is no need to reduce the number of bits used for speech encoding, due to which the voice quality of the speech remains high. In the information encoding system according to the invention the error correction and/or error detection is focused on the bits most important for the voice quality e.g. as the function of the C/I (Channel to Interference)-parameter describing the quality of the information transfer connection. The muting of speech synthesizing occurring in prior known systems on poor information transfer connection is in the information encoding method according to the invention reduced by using focused error detection.
Abstract:
A system and method for detecting discontinuous transmission (DTX) frames. The inventive method includes the steps of receiving data transmitted in a plurality of frames; classifying each of the frames; analyzing the classification of a number of successive frames of the received data and providing a metric with respect thereto; and determining, in response to the metric, if a frame is a discontinuous frame. In the illustrative embodiment, the step of classifying includes the step of error checking the frames using a cyclic redundancy check (CRC) error checking protocol. The received frames are classified as good frames (G), erasure frames (E), or discontinuous frames (D). A numerical value is assigned to each of the frames based on the classification thereof. Next, the frames are filtered to provide an output YnnullYnnull1nullXn where nullnnull is a frame number, Yn is the filter output for a given frame n, Ynnull1 is the filter output for a previous frame, and Xn is a stream of input frames. A threshold is set for the output Yn to facilitate the detection of discontinuous frames. That is, a detection of a discontinuous transmission frame is indicated when a frame is classified as an nullerasurenull and the filter output exceeds the threshold. On the detection of a discontinuous frame, the classification of the frame is changed from nullerasurenull to nulldiscontinuousnull. By reclassifying improperly classified erasure frames, the mobile receiver is inhibited from requesting retransmission of the frames or a change in the transmit power level. Consequently, network throughput and capacity are optimized and system power is conserved.
Abstract:
A speech frame is converted to speech bursts and interleaved over a predetermined number of TDMA frames for transmission. At a receive site, the transmitted signal is equalized and a quality signal indicating the quality of each burst signal is produced from the equalized signal. The equalized signal is de-interleaved, and then Vitrerbi-decoded speech samples are produced. A CRC circuit performs an error check operation on the decoded speech samples to produce an error bit if a speech frame failed the check. A decision circuit compares the quality signal with a first reference value and produces a first disable signal when it is lower than the first reference value. The decision circuit compares a total sum of the quality signals produced from the predetermined number of burst signals with a second reference value and produces a second disable signal when the total sum of the quality signals is lower than the second reference value. A speech decoder operates on the decoded speech samples to recover speech frames and masks speech frames in response to the error bit from the CRC circuit and the first and second disable signals from the decision circuit.
Abstract:
The invention provides an improved method and apparatus for identifying a bad GSM speech frame. Both the estimated signal-to-noise ratio (ESNR) of the received signal and the pseudo bit error rate (PBER) of a recorded speech signal are used to determine whether or not a speech frame is bad.
Abstract:
An error detector circuit, and an associated method, for a discrete receiver. The error detector circuit indicates bad frames of binary information signals which contain distorted bits of data in numbers so great as to prevent a convolutional decoder from generating, accurately, a decoded signal. When bit errors are detected in numbers beyond a first preselected value of the signal quality of a received signal combined with the detected number of bit errors forms a signal beyond a second preselected value, a bad frame is indicated.
Abstract:
In a receiver, a channel quality metric (220) is determined by demodulating a received second stream of discrete data elements (205) using a received first stream of discrete data elements (203) to produce a demodulated second stream of discrete data elements (212). The demodulated second stream is decoded, leading to an estimate of the second stream of discrete data elements (214). The estimate of the second stream is then re-encoded and the resulting re-encoded stream of discrete data elements (216) is compared with the demodulated second stream to produce the channel quality metric. Derived in this manner, the channel quality metric provides a method for detecting decoding errors in a stream of critical data elements.