Abstract:
In a robot for training a rehabilitator, the driving of actuators is controlled to generate the forces acting in six directions at the distal end of a bi-articular arm device to reproduce the relationship between the muscular output of the upper or lower limb of the human body and the output direction at the distal end of the limb. The rehabilitator can experience the relationship between the outputs of his or her limb muscles and the output direction at the distal end of the limb. Thus, the six actuators are run in operation along a predetermined sequence. One or more of the actuators, selected so that the direction of the force generated at the distal end of the first link will be the selected direction, is run in operation. The rehabilitator holding the distal end of the first link may physically experience the direction of that force.
Abstract:
In combination, vertically percussive vibration and non-symmetrical forces are applied to a patient. The non-symmetrical forces may be generated by a variety of unevenly applied weights that are supported at appropriate body locations in a manner that upsets normal body load symmetry. The non-symmetrical forces in combination with vertically percussive vibrations induce neuromusculoskeletal proprioceptive re-education and development within a living body to correct musculo-skeletal disorders including but not limited to scoliosis. A special posture modifying chair and head-orienting glasses may be used instead of or in addition to unevenly applied weights. An additional force concentrating treatment apparatus is also presented.
Abstract:
An exercise device is disclosed. The exercise device includes an ankle rest structure and a housing. Within the housing, a drive mechanism is provided that is connected to the ankle rest structure. The drive mechanism moves the ankle rest in a reciprocating motion along a generally horizontal plane. The exercise device also includes a knee rest structure spaced away from the ankle rest and connected to the housing. In one embodiment, the knee rest is movable in a horizontal and vertical direction with respect to the housing.
Abstract:
A walking assistance device (1) has a body-mounted assembly (2) installed on the waist of a user (A), foot-mounted assemblies (3L, 3R) installed on feet, and leg links (4L, 4R) which connect the foot-mounted assemblies (3L, 3R) to the body-mounted assembly (2). The foot-mounted assemblies (3L, 3R) are provided with floor reaction force sensors (13L, 13R). Results obtained by multiplying the absolute values of floor reaction force vectors (three-dimensional vectors) detected by the floor reaction force sensors (13L, 13R) by a predetermined ratio are defined as target values of the magnitudes of the supporting forces transmitted to the leg links (4L, 4R) from the foot-mounted assemblies (3L, 3R). Actuators (20L, 20R) of the leg links (4L, 4R) are controlled such that the supporting forces having the magnitudes of the target values act on the leg links (4L, 4R) from the foot-mounted assemblies (3L, 3R) through the intermediary of joints (19L, 19R).
Abstract:
An apparatus and method for simultaneously applying a compressive and a reciprocating force to underlying adipose cells from a location external to a patient's skin to rupture or otherwise remove the adipose cells within a subcutaneous tissue region. The adipose cells are ruptured through the mechanical application of compression and shearing forces. The patient's body then re-absorbs and expels the ruptured cells. This eliminates the need for invasive liposuction and the trauma associated with invasive liposuction. Various mechanical devices may be employed to impart the compressive and shearing forces.
Abstract:
A rehabilitation system that combines robotics and interactive gaming to facilitate performance of task-specific, repetitive exercise to enable individuals undergoing rehabilitation to improve the performance of coordinated movements of the ankle, and to practice balance activities, is disclosed. More specifically, the rehabilitation system includes at least one two degree-of-freedom robotic, haptic interface for a mammalian foot and interactive gaming hardware that is coupled to a controller, to provide a virtual reality-like environment.
Abstract:
A body weight support device of the present invention is equipped with a body attachment part attached to a user's body, a floor contact part provided contactably on a floor, a leg link part for connecting the body attachment part to the floor contact part through a joint part, an actuator for driving the joint part, and a control unit for controlling a drive of the actuator, wherein the control unit drives the actuator so that the leg link part gives a body weight support force to the user through the body attachment part.
Abstract:
There is provided a massage apparatus capable of providing optimum massage effects even with variations in thickness of to-be-treated area such as a lower leg from user to user. The massage apparatus 1 comprises a massage section 7 having a stationary massage member 15 and a movable massage member 16, a rotary shaft 9, 10 disposed so as to pass through the base end of the movable massage member 16, a driving section 11 for rotatably driving the rotary shaft 9, 10, a pair of right-hand and left-hand changer sections 12, 13 for changing a rotational force of the rotary shaft 9, 19 into an action of movement of the movable massage member 16 toward and away from the stationary massage member 15; and a breadth adjustment mechanism 14 capable of positioning movement of the stationary massage member 15 in directions toward and away from the movable massage member 16.
Abstract:
A powered massager having coaxially mounted first and second massage actuators that are positioned along the main axis of the powered massager is disclosed. The powered massager further includes a hand-held unit including a control panel for controlling the operation of the massager and a power source that is operatively associated with an electric motor that drives a rotatable output shaft through a gear arrangement. In one embodiment, the first massage actuator is a squirming massage actuator having a plurality of frames interposed between rolling members that are operable when the output shaft is driven by the electric motor, while the second massage actuator is a vibratory massage actuator that is operatively associated with the power source through a conductive pathway established between the power source and the vibratory massage actuator.
Abstract:
A massage device for a massage chair includes a frame on which first, second, and third actuation mechanisms are mounted. A tappet is connected to each of two first swaying mechanisms connected to an actuation portion of the first actuation mechanism. Two second swaying mechanisms are connected to an actuation portion of the second actuation mechanism and each includes a bracket. Each of two rocker arm mechanisms has a connecting portion fixed to one of the tappets and a rocker arm with rollers. A push portion is provided at each rocker arm. A pressure device is mounted between each push portion and one of the brackets. The pressure devices transmit movement from the second swaying mechanisms to the rocker arm mechanisms to proceed with massage movement. A pressure of each pressure device can be increased or released to increase massaging pressure of the rocker arms and to absorb shock.