Abstract:
Provided is a metallocene catalyst component for use if preparing isotactic polyolefins, which component has the general formula (I): R″ (CpR1R2R3)(Cp′R′n) MQ2 wherein Cp is a substituted cyclopentadienyl ring; Cp′ is substituted or unsubstituted fluorenyl ring; R″ is a structural bridge imparting stereorigidity to the component; R1 is a substituent on the cyclopentadienyl ring which is distal to the bridge, which distal substituent comprises a bulky group of the formula XR*3 in which X is chosen from Group IVA, and each R* is the same or different and chosen from hydrogen or hydrocarbyl of from 1 to 20 carbon atoms, R2 is substituent on the cyclopentadienyl ring which is proximal to the bridge and positioned non-vincinal to the distal substituent, and is of the formula YR#3, in which Y is chosen from Group IVA, and each R# is the same or different and chosen from hydrogen or hydrocarbyl of 1 to 7 carbon atoms, R3 is a substituent on the cyclopentadienyl ring which is proximal to the bridge and is a hydrogen atom or is of the formula ZR$3, in which Z is chosen from Group IVA, and each R$ is the same or different and chosen from hydrogen or hydrocarbyl of 1 to 7 carbon atoms, each R′ is the same or different and is hydrocarbyl having 1 to 20 carbon atoms in which 0≦n≦8; M is a Group IVB transition metal or vanadium; and each Q is hydrocarbyl having 1 to 20 carbon atoms or is a halogen.
Abstract:
Provided is a catalyst system for polymerization of monomer having at least one Ziegler-Natta polymerizable bond comprising: c) a supported Ziegler-Natta transition metal catalyst component comprising a Group 15 atom having two groups selected from the group consisting of alkyl and aryl, wherein the support is a magnesium halo dialkylamide; and d) an effective co-catalyst.
Abstract:
There are provided: (I) a solid catalyst component (A-1) for olefin polymerization, which is obtained by a process comprising the step of contacting: (a-1) a carrier of carboxyl group-carrying polymer particles having an average particle diameter of from 1 to 300 &mgr;m, and (b) a transition metal compound of the number 4 group of metals in the periodic table of elements; (II) a catalyst for olefin polymerization, which is obtained by a process comprising the step of contacting: (A-1) the above solid catalyst component, and (B) at least one compound selected from the group consisting of an organoaluminum compound and an organoaluminumoxy compound; (III) a process for producing an olefin polymer, which comprises the step of polymerizing an olefin in the presence of the above catalyst; and (IV) a process for producing the above solid catalyst component (A-1), which comprises the step of contacting: (a-1) the above carrier, and (b) the above transition metal compound.
Abstract:
This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting a organometal compound/organoaluminum mixture, a treated solid oxide compound, and, optionally, a second organoaluminum compound. The solid oxide has been treated with an electron-withdrawing compound, in particular a chlorine, preferably zinc chloride and carbon tetrachloride.
Abstract:
Initiator systems of the invention comprise: a complexed initiator comprising at least one of a complex of a complexing agent comprising at least one hydroxide and an initiator or a complex of a complexing agent comprising at least one alkoxide and an initiator; and a decomplexer. The initiator systems are useful for initiating polymerization of at least one monomer to form polymerized compositions. Kits of the invention useful for forming the polymerized compositions comprise a polymerizable composition and an initiator component, wherein the initiator component comprises a complexed initiator of the invention. Bonding compositions can be prepared by mixing the polymerizable composition of the kit with the respective initiator component.
Abstract:
A method for producing a supported catalyst useful in polymerization of ethylene and copolymerization of ethylene and &agr;-olefin is disclosed. The method includes treating the magnesium-containing carrier with a titanium compound containing oxygen atom(s), wherein said carrier is obtained by reaction of an organomagnesium compound of the structure of MgPh2.nMgCl2.mR2O (n=0.37˜0.7; m≧1; R20=ether; Ph=phenyl) with an organic chloride compound in a mole ratio of organic chloride compound/Mg≧0.5, at −20˜80° C. In one embodiment, the organic chloride compound may be carbon tetrachloride. A specific catalyst is provided whose activity is low in the beginning but slowly rises to a sufficient degree as the process of polymerization progresses, the polymer produced with the use of said catalyst having high bulk density, a well adjusted particle size distribution, and a narrow molecular weight distribution.
Abstract translation:公开了一种用于乙烯聚合和乙烯和α-烯烃共聚的负载型催化剂的制备方法。 该方法包括用含氧原子的钛化合物处理含镁载体,其中所述载体通过MgPh2.nMgCl2.mR2O结构的有机镁化合物(n = 0.37〜0.7; m = 1; R 20 =醚; Ph =苯基)与有机氯化物化合物的摩尔比为Mg> = 0.5,在-20〜80℃下进行。在一个实施方案中,有机氯化物化合物可以是四氯化碳。 提供一种具体的催化剂,其开始时的活性低,但是随着聚合过程的进行而缓慢上升到足够的程度,使用所述具有高堆积密度,良好调节的粒度分布和狭窄的催化剂制备的聚合物 分子量分布。
Abstract:
The invention provides a process for an improved oxirane hydroformylation catalyst, the improved oxirane hydroformylation catalyst, and a one step process for preparing a 1,3-diol in the presence of such a catalyst. One process for preparing the hydroformylation catalyst involves: a) forming a complex (A) by contacting a ruthenium(0) compound with a ditertiary phosphine ligand; and b) forming a complex (B) by subjecting complex (A) to a redox reaction with a cobalt(0) carbonyl compound. This catalyst is used in a one step hydroformylation process for preparing a 1,3-diol, comprising the reaction of an oxirane with syngas at hydroformylation conditions in an inert solvent in the presence of the above hydroformylation catalyst where recovery of product is preferably accomplished via phase separation of a diol rich phase from the bulk reaction liquor.
Abstract:
There are provided (i) a heat resistant catalyst sheet having an aramid fiber and a catalyst component-containing titania fiber; and (ii) a process for producing a heat resistant catalyst sheet, which has the step of making paper from a mixture of an aramid fiber and a catalyst component-containing titania fiber.
Abstract:
A photocatalytic film is formed by: a step for forming an uncured underlayer from an organic composition on the surface of a resinous base and polymerizing the organic composition to convert the uncured underlayer into an underlayer having a hardness higher than that of the resinous base; a step for forming an uncured intermediate layer from a polymerizable and curable silicone composition on the uncured underlayer or on the underlayer to yield an uncured intermediate layer, and polymerizing the polymerizable and curable silicone composition to convert the uncured intermediate layer to an intermediate layer, the polymerizable and curable silicone composition being prepared mainly from a hydrolyzable tetrafunctional silane derivative; and a step for forming a photocatalytic layer on the intermediate layer. This process can form an intermediate layer having a very high hardness without cracking and can easily yield a photocatalytic film having a satisfactory abrasion resistance.
Abstract:
The present invention has for its object to provide a novel catalyst by use of which methylbenzenes can be oxidized in gaseous phase in the presence of molecular oxygen to give the corresponding aromatic aldehydes in high yields, a process for producing an aromatic aldehyde from the corresponding methylbenzene in a high yield by use of said catalyst, and a process for producing cyclohexanedimethanol which comprises hydrogenating phthalaldehyde among the aromatic aldehydes which can be obtained as above. The present invention is directed to a catalyst for oxidation of methylbenzene which is used for the production of the corresponding aromatic aldehyde by the gas-phase oxidation of a methylbenzene in the presence of molecular oxygen, and has a composition of the following general formula (1): WaXbYcOx (1) wherein W represents a tungsten atom; X represents at least one kind of element selected from the group consisting of P, Sb, Bi and Si; Y represents at least one element selected from the group consisting of Fe, Co, Ni, Mn, Re, Cr, V, Nb, Ti, Zr, Zn, Cd, Y, La, Ce, B, Al, Tl, Sn, Mg, Ca, Sr, Ba, Li, Na, K, Rb and Cs; O represents an oxygen atom; a, b, c and x represent the numbers of atoms of W, X, Y and O, respectively; provided, however, the proportions of a, b and c are such that when a=12, b=0.5 to 10 and c=0 to 15; X represents a numerical value which is determined by the oxidized states of the elements other than oxygen.