Abstract:
An encoder scale for an electromagnetic induction linear encoder includes a substrate, an electroconductive layer exhibiting electroconductivity and provided to one surface of the substrate, and an electric conductor provided on the electroconductive layer. The electroconductive layer is wider than the electric conductor in a plan view of the substrate and is grounded. The electroconductive layer is formed on the entire one surface of the substrate except a guide surface, and glass is exposed on the guide surface.
Abstract:
A flexible mount is provided for coupling a force actuator to a caliper jaw. The flexible mount includes a first mounting portion for being coupled to the caliper jaw, a second mounting portion for being coupled to the force actuator, and a flexible element (e.g., a parallel flexure) coupled between the first and second mounting portions. When a force is applied to the force actuator (e.g., by a user pushing on a thumbwheel) along the measuring axis direction, the flexible element flexes to generate a measuring force that is applied to the caliper jaw. The use of the flexible mount results in more control and a better feel for a user when attempting to exert control to provide a desired amount of force during a measuring process. The flexible mount may also utilize a fastening configuration that is compatible with existing mounting features on existing caliper jaws.
Abstract:
A method is provided for operating a chromatic range sensor (CRS) system, which may comprise a chromatic point sensor (CPS) system including an optical pen, to measure a low reflectivity surface. The CRS system may include a high sensitivity measurement mode in which it uses an unconventional low sampling rate or “long” self-saturating exposure time, to measure the low reflectivity surface. The “long” self-saturating exposure time may cause one or more detector pixels to self-saturate to at least a saturation threshold level, which prevents them from indicating a valid wavelength peak. Such pixels may define an invalid peak portion of a nominal total measurement range. The CRS may still detect a valid wavelength peak or height measurement, when the surface is located in a valid subset of the nominal total measurement range of the CRS system determined such that it excludes the invalid peak portion.
Abstract:
An outer dimension measuring apparatus includes a light source; an optical system focusing the light emitted from the light source onto an optical axis; a reflector reflecting the focused light; a detector detecting an intensity of the reflected light; and a calculator calculating an outer dimension of a measured object using a first focus position, a second focus position, and a position of the reflector on the optical axis, the first focus position lying on the optical axis where a peak in reflected light intensity is detected by the detector for light reflected by a first surface, and the second focus position lying on the optical axis where a peak in reflected light intensity is detected by the detector for light that has been reflected by the reflector and emitted at a second surface.
Abstract:
A scale of a photoelectric encoder includes a base member and gratings on the base member. The gratings can be formed on the surface of the base member by plating and arranged at a prescribed pitch on the base member. The surface of the base member is a roughened surface which is roughened by sandblasting or with a chemical. The gratings are light absorptive gratings or light reflective metal gratings.
Abstract:
Method for measuring a height map of a test, including measuring a coarse height map of the test surface with a pre-map sensor provided to an optical profiler with a relatively long working distance and/or a large field of view, storing the coarse height map in a memory, subdividing the coarse height map into sections appropriate for the field of view of a high resolution optical profiler sensor provided to the optical profiler, calculating corresponding X, Y and Z positions for the optical profiler sensor with respect to the test surface, calculating a trajectory in the X, Y, Z-direction for the optical profiler sensor with respect to the test surface using the calculated X, Y, Z-positions, moving the optical profiler in the X, Y, Z-direction with respect to the test surface according to the trajectory, and measuring a high accuracy height map with the high resolution optical profiler sensor.
Abstract:
In a shape measuring apparatus having a scanning probe to perform scanning measurement using a tip ball provided at an end of a stylus with the tip ball being in contact with an object to be measured, a tip ball displacement detector detects a displacement of the tip ball of the scanning probe, a displacement of a moving mechanism that relatively moves the object to be measured and the scanning probe is detected, and an angle formed by a contact direction of the tip ball with the object to be measured and an axial direction of the stylus is calculated. The displacement of the tip ball that is detected by the tip ball displacement detector is corrected on the basis of the angle, and a corrected value of the displacement is outputted. The corrected value is added to the displacement of the moving mechanism to calculate a measurement value.
Abstract:
The adapter correcting for glass thickness includes an adapter main body, a plane parallel plate, and a retainer. The adapter main body includes an attacher/detacher capable of attaching and detaching with respect to an adapter connecter on the lens barrel; a tubular accommodator extending from the attacher/detacher toward the objective along an optical axis of the field lens; and a tongue provided on the attacher/detacher side of the accommodator. The plane parallel plate includes two mutually parallel flat surfaces and is inserted into the accommodator such that the two flat surfaces are orthogonal to the optical axis of the field lens. The retainer is attached to an end of the accommodator closest to the objective and holds the plane parallel plate between the retainer and the tongue. The accommodator is formed to have a tubular length sufficient to insert at least two plane parallel plates.
Abstract:
An image measuring apparatus includes: a visible light source emitting each light of a blue region, a green region, and a red region; an infrared light source emitting light of an infrared region; an image capturer receiving at least one of reflected light or transmitted light of an object, and converting the light to an electric signal; an optical system passing each light of a visible light region and the infrared region with respect to an object to the image capturer without changing a relative position between the object and the image capturer; an intensity controller separately controlling each light amount of the blue region, the green region, the red region, and the infrared region; and a calculator detecting information of the object by processing the electric signal obtained after converting at the image capturer.