Abstract:
A receiver for a three-wire digital interface, a method for operating a three-wire digital interface, a signalling system comprising the receiver, and a wireless communication device comprising the signalling system. The receiver for a three-wire digital interface comprises a first resistive element coupled between a first input terminal and a first junction node, a second resistive element coupled between a second input terminal and a second junction node, and a third resistive element coupled between a third input terminal and a third junction node. A network comprising first second and third network terminals is coupled to first, second and third junction nodes. The network has substantially the same impedance between all pairs of the first, second and third network terminals.
Abstract:
A conversion between two texture compression formats comprises calculations performed at index-level for reducing handling of values with color bit-length and an amount of calculations with color values. Format conversion can thus be performed in real time upon displaying an image using the compressed texture data, without significant slowing down of a display rate of the images. It may be implemented in particular for conversion from DXT1—to ETC1 compression format, and a non-flipped or flipped orientation of an ETC1—compressed texture data block can thus be determined from said texture data block as initially compressed in DXT1 format.
Abstract:
A process for performing an auto-test of a fully discharged battery of an electronic appliance including a battery charger, said process involving the steps of : performing an initialization phase; charging said battery with a predetermined constant current during a predefined period allowing stabilization of said current (Icurrent); detecting the voltage of said battery after said predefined period, said battery being still in charge; testing whether said sensed voltage is comprised within a predetermined range of threshold values (V1, V2), and reporting a battery failure when said sensed value is outside said range. The invention is particularly adapted to the auto-test of a backup battery made of Electric double layer capacitors or any fully discharged backup battery.
Abstract:
A system and method for vector memory array transposition. The system includes a vector memory, a block transposition accelerator, and an address controller. The vector memory stores a vector memory array. The block transposition accelerator reads a vector of a block of data within the vector memory array. The block transposition accelerator also writes a transposition of the vector of the block of data to the vector memory. The address controller determines a vector access order, and the block transposition accelerator accesses the vector of the block of data within the vector memory array according to the vector access order.
Abstract:
A multiphase buck converter (10) is disclosed, comprising: —a first buck converter branch (SD1, L1) comprising a first core section (COR1), a first power section (PWR1) having a first output node (LX1), a first coil (11) having a first end connected to the first output node (LX1), the first power section (PWR1) being adapted to be controlled by the first core section (COR1) for providing to the coil (L1) a coil current (I1), the first core section (COR1) and the first power section (PWR1) being integrated in a chip (IC); —a second buck converter branch (SD2, L2) comprising a second core section (COR2), a second power section (PWR2) having a second output node (LX2), a second coil (L2) having a first end connected to the second output node (LX2), the second power section (PWR2) being adapted to be controlled by the second core section (COR2) for providing to the second coil (L2) a second coil current (I2), the second core section (COR2) and the second power section (PWR2) being integrated in said chip (IC); —a feedback loop adapted to balance said coil currents (I1,I2). The feedback loop comprises a control block (C_B) that, in order to balance said coil currents, is adapted to compare a first average voltage at the first output node (LX1) with a second average voltage at the second output node (LX2) and control the first (SD1, L1) and second branch (SD2, L2) in order to make said first and second average voltages equal to each other. The control block (C_B) is integrated in said chip (IC) and has a first input directly connected to said first output node (LX1) and a second input directly connected to said second output node (LX2). The control block (C_B) is adapted to directly obtain said first and second average voltages from the instantaneous voltages of the first (LX1) and second (LX2) output nodes.
Abstract:
A receiver (100) for a three-wire digital interface, comprises a first resistive element (R1) coupled between a first input terminal (A) and a first junction node (JA), a second resistive element (R2) coupled between a second input terminal (B) and a second junction node (JB), and a third resistive element (R3) coupled between a third input terminal (C) and a third junction node (JC). A network (70) comprising first second and third network terminals (71, 72, 73) is coupled to, respectively, first, second and third junction nodes (JA, JB, JC). The network has substantially the same impedance between all pairs of the first, second and third network terminals. A first comparator (C1) has a non-inverting input (10) coupled to the first input terminal (A), an inverting input (12) coupled to the second junction node (JB), and an output (14) coupled to a first output terminal (AJ). A second comparator (C2) has a non-inverting input (20) coupled to the AK first input terminal (A), an inverting input (22) coupled to the third junction node (JC), and an output (24) coupled to a second output terminal (AK). A third comparator (C3) has a non-inverting input (30) coupled to the second input terminal (B), an inverting input (32) coupled to the third junction node (JC), and an output (34) coupled to a third output terminal (BJ). A fourth comparator (C4) has a non-inverting input (40) coupled to the second input terminal (B), an inverting input (42) coupled to the first junction node (JA), and an output (44) coupled to a fourth output terminal (BK). A fifth comparator (C5) has a non-inverting input (50) coupled to the third input terminal (C), an inverting input (52) coupled to the first junction node (JA), and an output (54) coupled to a fifth output terminal (CJ). A sixth comparator (C6) has a non-inverting input (60) coupled to the third input terminal (C), an inverting input (62) coupled to the second junction node (JB), and an N output (64) coupled to a sixth output terminal (CK).
Abstract:
A method of conditioning a first signal transmitted between a first and a second near field communication, NFC, device, the method comprising: determining a transfer function representative of a distortion arising from transfer of a signal from the first NFC device to the second NFC device; determining a pre-distortion function from the transfer function; and applying the pre-distortion function to the first signal, wherein the pre-distortion function at least partially compensates for the determined transfer function.
Abstract:
A low-noise amplifier (LNA) circuit utilizes the capacitive cross coupling technique with two pairs of NMOS transistors in conjunction with two cross coupled PMOS transistors to obtain a reduced noise figure. By using the cross coupling technique on the PMOS input transistor, the LNA circuit is able to reduce the noise figure below 2 dB without the use of an inductor. This LNA circuit may be used to amplify a signal in the WLAN band or the Bluetooth band, either independently or simultaneously.
Abstract:
A voltage level shifting device for driving a capacitive load has an input terminal for receiving a first input signal switchable between a first logic state corresponding to a first reference voltage and a second logic state corresponding to a second reference voltage, and an output terminal for supplying an output signal switchable between a first logic state corresponding to a third reference voltage and a second logic state corresponding to a fourth reference voltage. The device also has a first electronic circuit that is activated following a commutation of the first input signal from the first reference voltage to the second reference voltage for fixing the output terminal to the fourth reference voltage. The device further has a second electronic circuit that is activated following a commutation of the first input signal from the second reference voltage to the first reference voltage.
Abstract:
A method allows changing an image raster direction from an application raster direction to a screen raster direction, in-flight while pixel values of an image are transferred successively from an application output memory to a display unit. A single buffer memory array is implemented between the application output memory and the display unit. Two writing orders for cells of the buffer memory array are used in turn, each being combined with a different reading order for the cells. The method can be hardware-implemented, and is adapted for burst-handling of the pixel values.