Abstract:
According to embodiments of the present invention, a method of initiating a base station is provided, comprising the following steps that: a basic coverage cell sends an switch on instruction to a hot spot cell in a closed state according to a predetermined rule, the switch on instruction carrying the predetermined rule information; the basic coverage cell is provided with a user equipment (UE) for measuring, and receives a measurement report from the UE; the basic coverage cell sends an switch on instruction to the hot spot cell such that the hot spot cell provides communication service for the UE. According to the embodiments of the present invention, a network-side equipment is further provided. As illustrated in technical solutions of the present invention, by setting a rule to select the hot spot cell adapted to be initiated, it can make data receiving of the UE suffer slight interference as initiating the base station, reduce interference form the data receiving of the UE to the down-link reference signal of the hot spot cell as possible, and thereby system performance can be improved effectively.
Abstract:
This application discloses a method of using NH and NCC pairs to resolve security issues. It includes: an MME sends a sequence including multiple NH and NCC pairs to S1GW that is calculated to correspond to a UE. After the S1GW receives a UE handover message or a UE bearer switch message from a base station, the S1GW may choose a next unused NH and NCC pair from the sequence sent by the MME and send it to a target base station. In using this application, part of the bearer switch of the UE or the switch of the UE can be terminated at the S1GW or HeNB GW, which reduces impact on the bearer switch or UE handover from a base station and core network and cuts down on the use of system resources.
Abstract:
The present invention provides a method of anonymously reporting minimization of drive test (MDT) measurements. According to the method, a mobility management entity (MME) obtains MDT data anonymity configuration which indicates whether MDT measurements are to be reported anonymously at a type allocation code (TAC) level; sends a TAC of a UE to a trace collection entity (TCE) if the MDT data anonymity configuration indicates MDT measurements are to be reported anonymously at the TAC level; sends an international mobile subscriber identification (IMSI) or an international mobile equipment identity and software version (IMEISV) of the UE to the TCE if the MDT data anonymity configuration indicates other information, e.g. Trace, is adopted for anonymously reporting MDT measurements. The present invention enables an MME to send different identities of a UE to the TCE according to different requirements for anonymity to implement anonymous reporting of MDT measurements.
Abstract:
The present invention provides a method of anonymously reporting minimization of drive test (MDT) measurements. According to the method, a mobility management entity (MME) obtains MDT data anonymity configuration which indicates whether MDT measurements are to be reported anonymously at a type allocation code (TAC) level; sends a TAC of a UE to a trace collection entity (TCE) if the MDT data anonymity configuration indicates MDT measurements are to be reported anonymously at the TAC level; sends an international mobile subscriber identification (IMSI) or an international mobile equipment identity and software version (IMEISV) of the UE to the TCE if the MDT data anonymity configuration indicates other information, e.g. Trace, is adopted for anonymously reporting MDT measurements. The present invention enables an MME to send different identities of a UE to the TCE according to different requirements for anonymity to implement anonymous reporting of MDT measurements.
Abstract:
Various examples provide a method for radio resources management. An MCE or a GCSE AS or a UE receives usage information of eMBMS radio resources, and adjusts radio resources in response to a determination that there is an overload state. The MCE may re-configure the eMBMS radio resources. Alternatively, the UE or the GCSE AS may establish a unicast channel for transporting a GCSE service which was transmitted on an overloaded eMBMS bearer, and release the eMBMS bearer. The technical mechanism can make effective use of radio interface resources and reduce data loss.
Abstract:
The present invention discloses a method of and system for performing the access control as well as a radio resource management entity. The method includes: detecting, by a hybrid radio resource management entity, an access control trigger event, determining, by the hybrid radio resource management entity, a non-Closed Subscriber Group (CSG) User Equipment to be removed, and disconnecting, by the hybrid radio resource management entity, the connection with the non-CSG User Equipment to be removed.
Abstract:
A method for allocating an aggregate maximum bit rate (AMBR) of a user equipment (UE) includes obtaining, by a master base station (MeNB), the AMBR of the UE (UE-AMBR), and obtaining, by the MeNB, information for allocating an AMBR of a secondary base station (SeNB), and allocating, the AMBR of the SeNB according to the information, wherein a sum of the AMBRs of the MeNB and the SeNB is not greater than the UE-AMBR. A method for coordinating aggregate bit rates of non-GBR services between base stations includes sending, by an SeNB, information for allocating an aggregate maximum bit rate (AMBR) of the SeNB to an MeNB, and receiving, by the SeNB, the AMBR allocated by the MeNB.
Abstract:
The present invention provides a method of anonymously reporting minimization of drive test (MDT) measurements. According to the method, a mobility management entity (MME) obtains MDT data anonymity configuration which indicates whether MDT measurements are to be reported anonymously at a type allocation code (TAC) level; sends a TAC of a UE to a trace collection entity (TCE) if the MDT data anonymity configuration indicates MDT measurements are to be reported anonymously at the TAC level; sends an international mobile subscriber identification (IMSI) or an international mobile equipment identity and software version (IMEISV) of the UE to the TCE if the MDT data anonymity configuration indicates other information, e.g. Trace, is adopted for anonymously reporting MDT measurements. The present invention enables an MME to send different identities of a UE to the TCE according to different requirements for anonymity to implement anonymous reporting of MDT measurements.
Abstract:
Examples of the present disclosure provide a method for determining access control, applied in a handoff procedure of a UE. The method includes: if a current service is a LIPA@LN service, and if the UE is in a same local network before and after the handoff, keeping, by a node performing access control determination, service continuity of the LIPA@LN service; if the UE moves out of the local network after the handoff, deactivating, by the node performing the access control determination, the LIPA@LN service; if the current service is a SIPTO@LN only service or a SIPTO@CN@LN service, if the UE is in the same local network before and after the handoff, keeping, by the node performing the access control determination, the service continuity of the SIPTO@LN only service or the SIPTO@CN@LN service; if the UE moves out of the local network after the handoff, determining, by the node performing the access control determination, whether to keep the service continuity of the SIPTO@LN only service or the SIPTO@CN@LN service according to a network policy. According to the technical solution provided by the present disclosure, service continuity of the LIPA service or the SIPTO service can be maintained correctly.
Abstract:
The embodiments of the present invention provide a method for cellular communications, comprising the following steps: network side equipment receiving service request of user equipment (UE); network side equipment selecting communications resource of two or more base stations for the UE; the base station communicating with the UE. The present invention also provides network side equipment and user equipment (UE). The mobile communication system can simultaneously serve UE by providing multiple base stations and/or base station having various communication modes by means of the scheme set forth in the present invention. In addition, regardless of the network side equipment and UE, they can dynamically load adapted access technology, so that the user can access to different communication systems anytime and anywhere, and meanwhile the system can dynamically and adaptively be adjusted, according to the existing resource of the network, to providing service of wider bandwidth, higher rate for users.