Abstract:
A propeller alignment device is described. The propeller alignment device can include a second retainer attached to a propeller and a motor. The propeller alignment device can also include a first retainer that does not rotate, but that is aligned with the second retainer. The first retainer can include two or more magnets oppositely orientated relative to each other. The second retainer can also include two or more magnets oppositely orientated relative to each other. As the second retainer rotates relative to the first retainer, the magnets may alternatingly align with each other. In the absence of a current applied to the motor, the magnets may magnetically bias the second retainer into a predetermined orientation relative to the first retainer. The predetermined orientation can be predetermined to correspond to an alignment of the propeller that is desirable (e.g., that minimizes aerodynamic drag on the propeller).
Abstract:
A flying machine disclosed in the present application includes a main body, a flying module and a function module which is for controlling working state of the flying module. The flying module includes at least one pair of flying units, wherein the flying unit includes a flying frame, rotors and a steering oar which works with the rotors to propel the flying machine. Compared with the conventional flying machine which requires four rotors, while loaded with the same power source, the present flying machine doubles the flight time, which solve the problem of short working time.
Abstract:
Systems and methods for obstruction detection during autonomous unmanned aerial vehicle landings, including unmanned aerial vehicles equipped with at least one video camera, an image processor that analyzes a feed from the video camera to detect possible obstructions, and an autopilot programmed to abort an autonomous landing if it receives a signal indicating an obstruction was detected. In some examples, the systems and methods are in communication with a ground station to perform obstruction detection analysis instead of performing such processing on board the UAV. In some further examples, the landing area includes a ground-based visual target that the UAV can locate and home in upon from the air.
Abstract:
An embodiment of the present disclosure provides an unmanned aerial vehicle, An unmanned aerial vehicle, with a double-layered structure formed by stacking a cover and a main component layer, wherein, the main component layer includes a base body and at least one functional component, the base body has a top facing to the cover layer and a bottom opposite to the top, the cover is in direct contact with the top of the base body, and the at least one functional component is mounted on the base body.
Abstract:
An aerial scanning system creates a model of a structure using an aerial platform configured to follow a flight path of movement about the structure and an optical scanner. A control system executes processing software reading data corresponding to at least one surface of the structure and, data corresponding to movement of the aerial platform about the structure, and uses the data to construct a three dimensional model of the structure.
Abstract:
A remotely controlled or autonomously controlled UAV is disclosed. The UAV has both wings and a deployable parachute to enable both fixed wing flight and paraglider flight. The UAV can fly at a higher speed to a mission area as a fixed wing craft, and loiter over the area as a powered paraglider. In some embodiments, the wings are jettisoned over the mission area and the UAV configured as a powered paraglider completes its mission. In other embodiments the UAV flies to the mission area as a fixed wing craft, deploys the parachute to loiter as a powered paraglider and then jettisons the parachute to fly under a fixed wing back to a base. The former embodiment cannot fly back to a base, they may be used to carry and deploy bombs or grenades, while the latter may be used for surveillance, deliver supplies or the like.
Abstract:
The vertical takeoff and landing unmanned aerial vehicle includes a pair of selectively rotatable ducted fans and a selectively rotatable thrust vectoring nozzle providing vertical takeoff and landing for an unmanned aerial vehicle or a similar type of aircraft. A pair of fixed forward-swept wings are mounted on a rear portion of a fuselage, and a pair of canards are mounted on a top end of a forward portion of the fuselage. The pair of ducted fans are respectively mounted on free ends of the pair of canards, and are selectively rotatable about an axis parallel to a pitch axis of the fuselage. An engine is mounted in the rear portion of the fuselage, and a thrust vectoring nozzle is mounted on the rear portion of the fuselage for directing thrust exhaust from the engine. The thrust vectoring nozzle is selectively rotatable about an axis parallel to the pitch axis.
Abstract:
An exhaust system includes a multiple of distribution risers which extend transverse to a plenum, each of the multiple of distribution risers includes at least one downstream directed aperture.
Abstract:
A combination rotor and wheel assembly for an unmanned vehicle with ground and aerial mobility has a rotor arm adapted to be attached at an inner end thereof to a vehicle body. A rotor is rotatably connected to an outer end of the rotor arm about a rotor axis, and a rotor drive mounted on the rotor arm rotates the rotor such that the rotor exerts an upward lift force on the rotor arm. An open spoked wheel is rotatably connected about the rotor axis independent of the rotor The diameter of the wheel is greater than that of the rotor, and a bottom edge of the wheel is below the rotor. A wheel drive rotates the wheel. Vehicles can have various numbers and orientations of the rotor and wheel assembly to provide aerial and ground mobility.
Abstract:
The invention pertains to an automobile and more particularly, to a flying car. A flying car, comprises a body, adapted for carrying the payload from once place to another, a tail attached to body at rear end adapted for stabilizing the vehicle, plurality of wheels at the bottom of car connected to a power transmission system, plurality of foldable wings on the sides of body, adapted for creating the pressure difference and creating lift to the vehicle. Further, plurality of jet engines adapted for driving the jet flying car on surface as well as on air. A gimbaled swivel propulsion (GSP) thrust vector control, to controls the direction of the thrust generated by the engines. And plurality of parachutes attached to the flying jet car to safe land the flying jet car under emergency.