Abstract:
A base station signal matching device is a base station signal matching device mounted in a distributed antenna system for amplifying a received base station signal and transmitting the amplified base station signal to a user terminal. The base station signal matching device includes a first unit for generating first and second branch base station signals by using a power division function based on the base station signal, and transmitting the second branch base station signal to a third unit, and a second unit for matching the first branch base station signal to be suitable for signal processing of the distributed antenna system.
Abstract:
A distributed antenna system includes a headend device for generating a downlink transmission signal by combining a plurality of downlink RF signals in different frequency bands, received from a plurality of base stations, and converting the downlink transmission signal into a downlink optical signal, a main remote device for receiving the downlink optical signal from the headend device, converting the downlink optical signal into the downlink transmission signal, and amplifying the plurality of downlink RF signals included in the downlink transmission signal, and a sub-remote device for receiving the downlink transmission signal distributed from the main remote device, and amplifying the plurality of downlink RF signals included in the received downlink transmission signal.
Abstract:
A base station signal matching device configured to receive a base station signal from a base transceiver station (BTS), the base station signal matching device is embedded in a relay device, and the base station signal matching device includes a signal attenuation unit configured to receive the base station signal and attenuate the input power level of the base station signal; and a signal matching unit configured to receive the base station signal passing through the signal attenuation unit to match the base station signal suitable for signal processing of the relay device.
Abstract:
A wideband highly linear amplifier includes a plurality of pre-distortion units for respectively linearizing digital signals of a plurality of bands, a synthesis unit for synthesizing output signals of the pre-distortion units, a single amplifier for amplifying signals outputted from the synthesis unit, distribution units for respectively separating the signals for each of the plurality of bands from the output signals of the amplifier, a plurality of inverse compensation attenuators for respectively attenuating the separated signals for each of the plurality of bands, and a feedback path for respectively feeding the attenuated signals for each of the plurality of bands back into the pre-distortion unit of the corresponding band out of the plurality of the pre-distortion units.
Abstract:
There is provided a distributed antenna system includes a plurality of head-end units configured to receive mobile communication signals from at least one base station, a hub unit connected to each of the plurality of head-end units through a first transport medium, the hub unit distributing the mobile communication signals respectively received from the plurality of head-end units to a plurality of remote units connected thereto through a second transport medium, and the plurality of remote units remotely disposed to transmit the mobile communication signals to a terminal in a service coverage, wherein the hub unit includes a signal summer configured to digitally sum sub-band signals in a same mobile communication service band based on the mobile communication signals.
Abstract:
According to one aspect of the disclosure, there is provided a mount bracket for installation of communication device in a structure, the mount bracket including: a bracket body coupled to the structure; a bracket base, to which the communication device is fixed, coupled to the bracket body and rotates to cover the bracket body; and a connection member provided at one end of the bracket body to rotatably connect the bracket base to the bracket body, wherein the bracket base includes an anti-detachment structure for preventing separation from the bracket body during rotation.
Abstract:
Disclosed is an OpenFlow based distributed antenna system (DAS) policy routing method. The DAS policy routing method includes: extracting, by a DAS unit, a match field from header information of a received frame; and comparing, by the DAS unit, the extracted match field with a matching rule of a forwarding table to route according to a matching traffic transmission policy and output a frame to an output port of the DAS unit.
Abstract:
A communication signal processing method comprises obtaining transmission delay value difference data relating to a difference in transmission delay values in a communication network that varies depending on whether or not a redundant path is used, obtaining redundancy status data relating to whether the redundant path is used, and controlling a parameter of a communication signal transmitted by the communication network based on the transmission delay value difference data when the redundant path is used as a result of determination according to the redundancy status data.
Abstract:
The present disclosure provides a method of allocating shared radio resources in a spectrum shared system (SSS), the method including: obtaining, by a system controller of the SSS, identification information from at least one radio service device of the SSS and a node unit of a distributed antenna system (DAS); determining, by the system controller of the SSS, whether the at least one radio service device interoperates with the DAS based on the identification information; and allocating, by the system controller of the SSS, the shared radio resources to the at least one radio service device and the DAS, respectively, based on a result of the determining of interoperating.
Abstract:
Provided is a communication repeater including a receiver configured to receive a plurality of test signals from a plurality of external communication devices and then receive a plurality of downlink signals from the plurality of external communication devices, and a digital signal processor configured to measure a delay time of each of the plurality of test signals and perform a delay synchronization process for the plurality of downlink signals, wherein the digital signal processor is configured to determine whether the plurality of downlink signals for which the delay synchronization process has been performed are synchronized, and perform synchronization restoration for a downlink signal having a synchronization error among the plurality of downlink signals, based on a result of the determining.