Abstract:
The present invention relates to amphiphilic polymers, and micelles and compositions comprising the same, and their use in a variety of biological settings, including imaging, targeting drugs, or a combination thereof for diagnostic and therapeutic purposes.
Abstract:
Methods and apparatus are disclosed for end-to-end ATM calls based on the interworking of ATM SVC signaling (such as private network-network interface signaling) with A.2630.1 AAL2 signaling. In one network, Q.2630.1 AAL2 signaling in the originating access segment triggers, on proper authentication, ATM SVC signaling (e.g., PNNI, IISP, AINI, etc.) in the core, which triggers Q.2630.1 AAL2 signaling in the terminating access segment. The triggering is done at the edge-core boundary where an AAL2 switch and/or multiplexer or an ATM switch with AAL2 multiplexing/switching capabilities is located. In the access network between the ATM-AAL2 edge switch and the edge gateway, multiplexed AAL2 virtual channel connections (VCCs) are typically used. Single-CID AAL2 SVCs are typically used in the core network, and between the ATM-AAL2 edge switch and PSTN trunk gateways. The binding of voice calls to ATM bearer channels is done at the edge gateway when triggered by a call agent.
Abstract:
This invention relates to compositions for the sustained release of biologically active polypeptides, and methods of forming and using said compositions, for the sustained release of biologically active polypeptides. The sustained release compositions of this invention comprise a biocompatible polymer having dispersed therein, a biologically active polypeptide and a sugar.
Abstract:
This invention relates to compositions for the sustained release of biologically active polypeptides, and methods of forming and using said compositions, for the sustained release of biologically active polypeptides. The sustained release compositions of this invention comprise a biocompatible polymer having dispersed therein, a biologically active polypeptide and a sugar.
Abstract:
Microparticles that include a bisphosphonate and a polymer are produced by a method that includes forming a water-in-oil emulsion by mixing an aqueous solution of the bisphosphonate with a combination of a biocompatible polymer and a polymer solvent. At least one aqueous liquid can be mixed with the water-in-oil emulsion to form a water-in-oil-in-water emulsion and to extract the polymer solvent from the polymer, thereby forming the microparticles. Methods of treating a patient in need of therapy include administering the microparticles described to the patient. In one embodiment, the microparticles are formulated for the sustained release of the bisphosphonate.
Abstract:
Openings are formed in a laminate of a polycrystalline silicon film and an LTO film on a channel layer. While the laminate is used as a mask, impurities are implanted into a place in the channel layer which is assigned to a source region. Also, impurities are implanted into another place in the channel layer which is assigned to a portion of a second gate region. A portion of the polycrystalline silicon film which extends from the related opening is thermally oxidated. The LTO film and the oxidated portion of the polycrystalline silicon film are removed. While a remaining portion of the polycrystalline silicon film is used as a mask, impurities are implanted into a place in the channel layer which is assigned to the second gate region. Accordingly, the source region and the second gate region are formed on a self-alignment basis which suppresses a variation in channel length.
Abstract:
A pulsed circuit topology including a pulsed domino flip-flop. A circuit includes a domino logic gate having a domino output node responsive to input data during an evaluate pulse. Reset circuitry initiates and self-terminates a reset pulse during which the domino output node is precharged. A latch responsive to a first pulsed clock input signal is provided to latch data indicated at the domino output node.