Immobilizing chemical or biological sensing molecules on semi-conducting nanowires
    241.
    发明授权
    Immobilizing chemical or biological sensing molecules on semi-conducting nanowires 有权
    在半导体纳米线上固定化学或生物传感分子

    公开(公告)号:US08048377B1

    公开(公告)日:2011-11-01

    申请号:US10795730

    申请日:2004-03-08

    Abstract: The present invention is drawn toward a chemical or biological sensor that can comprise a semi-conducting nanowire and a chemical or biological sensing molecule tethered to the semi-conducting nanowire through a spacer group including a hydrophilic reactive group. In one embodiment, the semi-conducting nanowire can be part of an array of like or similar semi-conducting nanowires. Electrical leads can provide an electrical current to the array, and a signal measurement apparatus can be electrically coupled to the array, and can be configured for detecting changes in the electrical current of the array.

    Abstract translation: 本发明涉及化学或生物传感器,其可以包括通过包括亲水反应性基团的间隔基团连接到半导体纳米线的半导体纳米线和化学或生物传感分子。 在一个实施例中,半导体纳米线可以是类似或类似的半导体纳米线阵列的一部分。 电引线可以向阵列提供电流,并且信号测量装置可以电耦合到阵列,并且可以被配置为检测阵列的电流的变化。

    IONIC-MODULATED DOPANT PROFILE CONTROL IN NANOSCALE SWITCHING DEVICES
    242.
    发明申请
    IONIC-MODULATED DOPANT PROFILE CONTROL IN NANOSCALE SWITCHING DEVICES 有权
    纳米切换装置中的离子调制多普勒配置文件控制

    公开(公告)号:US20110253966A1

    公开(公告)日:2011-10-20

    申请号:US12763091

    申请日:2010-04-19

    CPC classification number: H01L45/085 H01L27/2463 H01L45/1233 H01L45/146

    Abstract: A nanoscale switching device is provided, comprising: a first electrode of a nanoscale width; a second electrode of a nanoscale width; an active region disposed between the first and second electrodes, the active region having at least one non-conducting layer comprising an electronically semiconducting or nominally insulating and a weak ionic conductor switching material capable of carrying a species of dopants and transporting the dopants under an electric field; and a source layer interposed between the first electrode and the second electrode and comprising a highly reactive and highly mobile ionic species that reacts with a component in the switching material to create dopants that are capable of drifting through the non-conducting layer under an electric field, thereby controlling dopant profile by ionic modulation. A crossbar array comprising a plurality of the nanoscale switching devices is also provided, along with a process for making at least one nanoscale switching device.

    Abstract translation: 提供一种纳米级切换装置,包括:纳米级宽度的第一电极; 纳米级宽度的第二电极; 有源区域,设置在第一和第二电极之间,有源区域具有至少一个非导电层,包括电子半导体或名义上绝缘的和弱离子导体开关材料,能够携带一种掺杂剂并在电气下传输掺杂剂 领域; 以及插入在所述第一电极和所述第二电极之间的源极层,并且包括高反应性和高度移动的离子物质,其与所述开关材料中的组分反应以产生能够在电场下漂移通过所述非导电层的掺杂剂 ,从而通过离子调制控制掺杂剂分布。 还提供了包括多个纳米尺度切换装置的交叉开关阵列,以及用于制造至少一个纳米级切换装置的工艺。

    Plasmonic electric-field concentrator arrays and systems for performing raman spectroscopy
    243.
    发明授权
    Plasmonic electric-field concentrator arrays and systems for performing raman spectroscopy 失效
    等离子体电场集中器阵列和用于执行拉曼光谱的系统

    公开(公告)号:US07995201B2

    公开(公告)日:2011-08-09

    申请号:US12287549

    申请日:2008-10-10

    CPC classification number: G01N21/658

    Abstract: Various embodiments of the present invention relate to plasmonic electric-field concentrators and to systems incorporating the plasmonic electric-field concentrators to perform Raman spectroscopy. In one aspect, a plasmonic electric-field concentrator comprises two or more large features, and a relatively small feature similar in shape to large features positioned adjacent to the two or more large features. The features are arranged so that when light of an appropriate wavelength is incident on the features, surface plasmon polaritons form on the outer surfaces of the features. The surface plasmon polaritons have associated electric fields extending perpendicular to the surfaces of the features. The electric fields are concentrated in the space between features forming an electric field hot spot that enhances Raman scattered light emitted from an analyte proximate to or absorbed on the features.

    Abstract translation: 本发明的各种实施例涉及等离子体电场集中器以及结合等离子体激元集中器以执行拉曼光谱的系统。 一方面,等离子体电场集中器包括两个或更多个大特征,以及与形状相邻的相对较小的特征,其尺寸与两个或更多个特征邻近的大特征相似。 特征被布置成使得当适当波长的光入射到特征上时,在特征的外表面上形成表面等离子体激元。 表面等离子体激元极化子具有垂直于特征表面延伸的相关电场。 电场集中在形成电场热点的特征之间的空间中,其增强了从附近或被吸收在特征上的分析物发射的拉曼散射光。

    Structure for surface enhanced raman spectroscopy
    244.
    发明授权
    Structure for surface enhanced raman spectroscopy 有权
    表面增强拉曼光谱的结构

    公开(公告)号:US07965388B2

    公开(公告)日:2011-06-21

    申请号:US12416907

    申请日:2009-04-01

    CPC classification number: G01N21/658 G01N2021/058 Y10S977/712

    Abstract: A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.

    Abstract translation: 本文公开了表面增强拉曼光谱的结构。 衬底具有垂直地配置的堆叠。 堆叠包括至少两个金属层和其间的至少一个电介质层。 堆叠的每个层具有受控的厚度,并且所述至少两个金属层中的每一个被配置为表现出等离子体共振的预定特性。

    TYPE SELECTIVE AND POLARIZATION SELECTIVE DEVICE FOR RAMAN SPECTROSCOPY
    245.
    发明申请
    TYPE SELECTIVE AND POLARIZATION SELECTIVE DEVICE FOR RAMAN SPECTROSCOPY 有权
    用于拉曼光谱的类型选择和极化选择装置

    公开(公告)号:US20100321685A1

    公开(公告)日:2010-12-23

    申请号:US12488318

    申请日:2009-06-19

    CPC classification number: G01J3/44 G01J3/02 G01J3/0224 G01N21/658

    Abstract: A type and polarization selective device for Raman spectroscopy includes a set of at least two antennas and a gap at their intersection. First antenna geometry is such that it is configured to resonate, for first or second (different from the first) polarization, at a predetermined stimulation frequency of a material for which Raman scattering is to be studied, or at a Stokes or anti-Stokes frequency corresponding with the material when excited at stimulation frequency. Second antenna geometry is such that it is configured to resonate, for the other of second or first polarization, at the Stokes frequency when the first antenna is configured to resonate at the stimulation or anti-Stokes frequency, or at the anti-Stokes frequency when the first antenna is configured to resonate at the stimulation or Stokes frequency, or at the stimulation frequency when the first antenna is configured to resonate at the Stokes or anti-Stokes frequency.

    Abstract translation: 用于拉曼光谱的类型和偏振选择装置包括至少两个天线的集合和它们的相交处的间隙。 第一天线几何形状使得其被配置为在要研究拉曼散射的材料的预定刺激频率下或在斯托克斯或反斯托克斯频率下谐振第一或第二(不同于第一极化)的极化 在刺激频率下激发时对应材料。 第二天线几何形状使得当第一天线被配置为以刺激或反斯托克斯频率或反斯托克斯频率谐振时,或者在反斯托克斯频率下,当第二天线几何形状被配置为对于第二或第一极化中的另一个以斯托克斯频率谐振, 第一天线被配置为在刺激或斯托克斯频率或刺激频率下谐振,当第一天线被配置为以斯托克斯或反斯托克斯频率谐振时。

    Method of Positioning Catalyst Nanoparticle and Nanowire-Based Device Employing Same
    248.
    发明申请
    Method of Positioning Catalyst Nanoparticle and Nanowire-Based Device Employing Same 失效
    定位催化剂纳米颗粒和基于纳米线的装置使用方法

    公开(公告)号:US20100109101A1

    公开(公告)日:2010-05-06

    申请号:US11742310

    申请日:2007-04-30

    Abstract: A method of positioning a catalyst nanoparticle that facilitates nanowire growth for nanowire-based device fabrication employs a structure having a vertical sidewall formed on a substrate. The methods include forming the structure, forming a targeted region in a surface of either the structure or the substrate, and forming a catalyst nanoparticle in the targeted region using one of a variety of techniques. The techniques control the position of the catalyst nanoparticle for subsequent nanowire growth. A resonant sensor system includes a nanowire-based resonant sensor and means for accessing the nanowire. The sensor includes an electrode and a nanowire resonator. The electrode is electrically isolated from the substrate. One or more of the substrate is electrically conductive, the nanowire resonator is electrically conductive, and the sensor further comprises another electrode. The nanowire resonator responds to an environmental change by displaying a change in oscillatory behavior.

    Abstract translation: 定位促进用于纳米线的器件制造的纳米线生长的催化剂纳米颗粒的方法采用具有形成在衬底上的垂直侧壁的结构。 所述方法包括形成结构,在结构或基底的表面中形成目标区域,并使用各种技术之一在目标区域中形成催化剂纳米颗粒。 该技术控制催化剂纳米颗粒在随后的纳米线生长中的位置。 谐振传感器系统包括基于纳米线的谐振传感器和用于访问纳米线的装置。 传感器包括电极和纳米线谐振器。 电极与衬底电隔离。 衬底中的一个或多个是导电的,纳米线谐振器是导电的,并且传感器还包括另一个电极。 纳米线谐振器通过显示振荡行为的变化来响应环境变化。

    Photonic device including at least one electromagnetic resonator operably coupled to a state-change material
    250.
    发明授权
    Photonic device including at least one electromagnetic resonator operably coupled to a state-change material 有权
    光子器件包括可操作地耦合到状态变化材料的至少一个电磁谐振器

    公开(公告)号:US07446929B1

    公开(公告)日:2008-11-04

    申请号:US11796085

    申请日:2007-04-25

    CPC classification number: G02F1/3515 G02F1/0009 G02F2203/13 G02F2203/15

    Abstract: Various aspects of the present invention are directed to photonic devices configured to control transmission of electromagnetic radiation through a resonator structure. In one aspect of the present invention, a photonic device includes at least one electromagnetic resonator and a state-change material operably coupled to the at least one electromagnetic resonator. The state-change material is capable of being reversibly transitioned between a high-resistivity state and a low-resistivity state, with a ratio of the resistivity of the high-resistivity state to the resistivity of the low-resistivity state being at least about 100. Transmission of electromagnetic radiation through the at least one electromagnetic resonator at an operational frequency is controllable by transitioning the state-change material between the high-resistivity state and the low-resistivity state. Methods for controlling transmission of a signal are also disclosed.

    Abstract translation: 本发明的各个方面涉及被配置为控制通过谐振器结构的电磁辐射的传输的光子器件。 在本发明的一个方面,光子器件包括至少一个电磁谐振器和可操作地耦合到至少一个电磁谐振器的状态变化材料。 状态变化材料能够在高电阻率状态和低电阻率状态之间可逆地转变,高电阻率状态的电阻率与低电阻率状态的电阻率的比率至少为约100 通过在高电阻率状态和低电阻率状态之间转变状态变化材料来控制以工作频率通过至少一个电磁谐振器的电磁辐射的传输。 还公开了用于控制信号传输的方法。

Patent Agency Ranking