Abstract:
The invention relates to a rotation path detection device for vehicles of public transportation having a drive device (20) for an entry/exit apparatus, which is mounted so it can be pivoted and/or displaced. Said apparatus has a drive unit (22), an electric drive motor (44), and a first reduction gear (26) and a second reduction gear (72), which is connected to the drive motor (44), having a sensor for ascertaining the position of the reduction gear.
Abstract:
A clutch mechanism of the present power device comprises a fixed gear member, a moving gear member engaged with the fixed gear member when moving to a clutch connecting position, an armature for moving the moving gear member to the clutch connecting position when rotated relatively to the moving gear member, an electromagnetic coil unit for applying a brake resistance to the armature, and a clutch holding surface for abutting against the moving gear member when the electromagnetic coil unit is turned off in the clutch connecting state and for holding the moving gear member at a brake-clutch connecting position. The abutment of the moving gear member against the clutch holding surface is released by rotating the moving gear member relatively to the armature in a state in which the electromagnetic coil unit is operated.
Abstract:
A door opening/closing apparatus is provided with a motor, a first clutch which transmits power from the motor to a door opening/closing mechanism of a slide door when current is applied to the motor while breaking transmission of power to the door opening/closing mechanism of the slide door when current is not applied, and a second clutch which transmits power from the motor to a door opening/closing mechanism of a back door when current is applied while breaking transmission of power from the motor to the door opening/closing mechanism when current is not applied.
Abstract:
A door is open and held by engaging a latch with a striker of a vehicle body. The door has a release actuator connected to the latch. The vehicle body includes a power drive and a control module. An operating unit instructs the control module to close the door. The control module instructs the release actuator to disengage the latch from the striker. After the control module instructs the power drive to start closing of the door, releasing of the release actuator is stopped by the control module at a door position determined by actual voltage of a power source.
Abstract:
A drive apparatus for boarding and unboarding devices, in particular for passenger doors, boarding ramps, retractable steps and the like on public transport vehicles having an electric drive motor the driven element of which is connected to the input element of a first reduction gear the output element of which is coupled to the actuation devices for the boarding and unboarding devices where the drive apparatus is constructed as a compact drive where the electric drive motor, the first reduction gear and a second reduction gears as well as an energizable clutch are disposed axially behind each other inside a tubular housing between the first reduction gear and the second reduction gear.
Abstract:
An opening/closing system for vehicle can improve detection accuracy of rotation of an output member and enhance reliability of its operation. The opening/closing system for vehicle includes a drive unit having an electric motor and a reduction gear unit. A drum, which is an output member, is fixed to the output shaft of the drive unit through a power transmittable member. A magnet fixed to the outer periphery of a disk member is disposed between the drum and the gear case of the reduction gear unit in such a way that the magnet rotates along with the drum when the disk member is fixed to the power transmittable member. A housing case fixed to the gear case is provided with a sensor accommodating section that accommodates a magnetic sensor. The magnetic sensor is disposed to detect the rotation of the drum from a change in a magnetic field created by the magnet.
Abstract:
A controller controls, based upon a manual operation signal from a first operating means and the automatic operation signal from a second operating means, a driving of a driving power source for generating a driving force for an opening/closing operation of a vehicle door. The controller switches control for driving the driving power source. An automatic operation mode is selected when the automatic operation signal is inputted to the controller, in which the driving power source is driven to output a predetermined first driving output value. A manual operation mode is selected when the manual operation signal is inputted to the controller in which the driving power source is driven to output a second driving output value which is higher than the first driving output value.
Abstract:
The device has at least one controllable divider element including a drive assembly guided within a track, the drive assembly being driven by an electric motor which is controllable by a central control unit and a local control unit, which units exchange data through an electric line located in the track and functioning as the power supply for the electric motor. According to the invention, a first direct voltage is provided in the central control unit, the voltage being connectable to the power supply line through a central switch which is actuated as a function of the data to be transmitted between the central and local control units, whereby, when the switch is opened, data are able to be transmitted from the local control unit to the central control unit. In addition, an especially advantageous initialization of the device is possible based on the method according to the invention.
Abstract:
An automotive vehicle includes one or more swinging doors which may be immobilized in a number of positions, so as to allow the doors to be used to assist passengers upon entering and leaving the vehicle. The motion of the door may be damped, or stopped entirely, either at the discretion of a vehicle occupant, or automatically, in the event that the door is driven by external forces to swing at a high rate.
Abstract:
A clutch mechanism of the power device includes a movable gear member which is rotated integrally with a wheel and engaged with a stationary gear member when moved in a first direction and disengaged from the stationary gear member when moved in a second direction opposite to the first direction, an armature which moves the movable gear member in the first direction when rotated relatively to the movable gear member, and an electromagnetic coil for applying brake resistance to the armature by attracting the armature by magnetic force to restrict a co-rotating state of the armature and the movable gear member. The armature has a clutch holding surface for maintaining a clutch-engaged state where the movable gear member and the stationary gear member are engaged with each other even when the electromagnetic coil is turned off in the clutch-engaged state.