Abstract:
Methods and systems for transmitting uplink control information and feedback are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
Abstract:
Systems, methods, and instrumentalities are disclosed for downlink resource allocation associated with a shared frequency band. A WTRU may receive resource allocation information associated with a component carrier and at least one carrier segment. The component carrier and the least one carrier segment may each comprise a plurality of resource block groups (RBG). At least two bitmaps may be associated with the resource allocation information. A size of a resource block group (RBG) of the component carrier and the at least one carrier segment may be based on a combined number of resource blocks (RB) of the component carrier and the one or more carrier segments divided by a 3GPP Rel-8/Rel-10 RBG size of the component carrier. The WTRU may determine at least one RBG allocated to the WTRU using the resource allocation information and may receive and decode the at least one RBG allocated to the WTRU.
Abstract:
Device-to-device (D2D) cross link power control systems and methods may be disclosed. For example, a device such as a UE or WTRU may determine whether it may have simultaneous transmissions where at least one of the transmissions may include a cross link transmission. The device may further determine whether a total transmit power of the simultaneous transmissions may exceed a maximum transmit power of the device. If the device may have simultaneous transmissions and such transmissions may exceed the maximum transmit power, the device may reallocate power based on a priority or priority setting. The device may further determine a maximum cross link power, a maximum device power, and a cross link transmit power level such that the device may further control the power for transmissions based thereon.
Abstract:
A method and apparatus for handling a control channel for carrier aggregation in wireless communications. The method includes determining which component carrier to listen to, detecting the downlink control channel, processing mapping information related to downlink and uplink transmissions and operating discontinuous reception with respect to carrier aggregation. The method also includes detecting a component carrier, determining the component carrier type and locating the anchor component carrier, if necessary, where the anchor component carrier carries the carrier aggregation information.
Abstract:
A method and apparatus for Time Division Duplex (TDD) operation in a wireless transmit/receive unit (WTRU) are disclosed. The method includes receiving a first TDD uplink (UL)/downlink (DL) configuration for a serving cell, receiving a second TDD UL/DL configuration for the serving cell, receiving an indication of directions to use for subframes with conflicting directions between the first TDD UL/DL configuration and the second TDD UL/DL configuration, using the first TDD UL/DL configuration for timing of UL scheduling and UL Hybrid Automatic Repeat Request (HARQ), using the second TDD UL/DL configuration for timing of DL scheduling and DL HARQ, and determining a direction for each subframe with conflicting directions based on the received indication, wherein on a condition that the determined direction for a subframe with conflicting directions is DL, receiving in the subframe in the DL.
Abstract:
Systems, methods, and instrumentalities are disclosed to desynchronize transmissions in group-based operations. A group user equipment (UE), e.g., a UE that is a member of a group of UEs, may be in an inactive mode. The group UE may receive a multicast message indicating that the group UE may enter an active mode. For example, the group UE may use the active mode for periodic reporting of its monitoring activity to the network. The multicast message may indicate a mechanism for the group UE to use to send an uplink transmission to the network. The group UE may send the uplink transmission to the network at a transmission time indicated by the mechanism. The transmission time may be desynchronized from other UEs in the group.
Abstract:
Systems, methods, and instrumentalities are provided to implement scheduling for device-to-device (D2D). A WTRU (e.g., a D2D WTRU) may determine whether the WTRU has D2D data to transmit. The WTRU may determine a set of allowed SA resources and/or allowed D2D data resources for transmission of the SA. The WTRU may select an SA resource and/or D2D data resources (e.g., from the set of allowed SA resources and/or D2D data resources) for transmission. The WTRU may select one or more transmission parameters. The WTRU may select one or more transmission patterns. The WTRU may transmit D2D data over the set of allowed D2D resources using the selected transmission patterns and according to the selected transmission parameters.
Abstract:
Physical layer processing and procedures for device-to-device (D2D) discovery signal generation and transmission and scheduling of D2D discovery signals are described. Detection and measurement of a D2D discovery signal, D2D signal identity management, and monitoring by a wireless transmit/receive unit (WTRU) of PDCCH for D2D discovery scheduling is described, as is a WTRU that may be configured with a D2D-specific transmission/reception opportunity pattern. The discovery signal may carry a payload for explicit information about user and/or service identity, and may be mapped to physical resources in such a way as to decouple transmission/reception of the discovery signal from downlink operations. A WTRU may measure a D2D discovery signal quality and report to the network.
Abstract:
A method and apparatus are described. A wireless transmit/receive unit (WTRU) generates data bits and piggybacked acknowledgement/non-acknowledgement (PAN) bits and generates a plurality of symbols based on the data bits and the PAN bits. Each symbol of the plurality of symbols represents a plurality of bits and has a least significant bit (LSB) position, and no PAN bits are present in the LSB position of each of the plurality of symbols. The plurality of symbols are transmitted.
Abstract:
A method and apparatus for determining uplink power in a wireless transmit receive unit (WTRU). The WTRU operates in a carrier aggregated system. The WTRU is configured to receive a plurality of uplink power parameters indexed to one of a plurality of uplink carriers and receive a transmit power control command indexed to the one of the plurality of uplink carriers. The WTRU is configured to determine a pathloss of the one of the plurality of uplink carriers and determine a transmit power for the one of the plurality of uplink carriers based on the plurality of power parameters, the transmit power control command, and the pathloss.