Abstract:
The invention relates to an apparatus and a method of freezing a liquid substance contained in at least one receptacle, comprising the steps of: providing the liquid substance in at least one receptacle, providing a cooling chamber and a cooling device having a cooling surface; setting the temperature of the cooling surface, starting a freezing procedure by placing the receptacle with the liquid substance therein on the cooling surface to form a seed or initial zone of nucleation; and continuing the freezing procedure to completely freeze the substance.
Abstract:
An electronic device may include a battery well and a plurality of tabs. The battery well may receive a disk-shaped battery and may include an annular sidewall, an open end, an end wall and a recess. The open end may be disposed at a first end of the sidewall. The end wall may be substantially perpendicular to the sidewall at a second end of the sidewall and axially between the recess and the open end. The recess may be disposed at the second end of the sidewall and adjacent the end wall. The recess may be adapted to receive a portion of the battery therein. The tabs may be disposed at the open end and may extend radially inward from the sidewall to releasably retain the battery in the battery well. The tabs may define a plane that is substantially parallel to the end wall.
Abstract:
An apparatus, system for analyzing, and process for separating cuvettes supplied in bulk form are presented. The apparatus comprises a reservoir with an inlet for supplying cuvettes in bulk form to a reservoir space, a separator with an outlet for outputting separated cuvettes from a separator space communicating with the reservoir space, a reservoir spiral contained in the reservoir space to transport cuvettes to the separator space by rotating the reservoir spiral, and a separator spiral contained in the separator space to transport cuvettes to the outlet by rotating the separator spiral. Adjacent turns of the separator spiral have an inter-distance dimensioned such that a cuvette can be held in a holding position in which projections projecting outwards from a body for receiving liquid rest on adjacent turns, with the body dipping into a spiral groove between the adjacent turns.
Abstract:
An inserter and methods of using embodiments of the inserter are described. The inserter includes a housing having a cannula assembly and an insertion mechanism. Two buttons are located on the inserter and are concomitantly actionable for actuation of the insertion mechanism, wherein the insertion mechanism is configured to place a cannula assembly in a well that is disposed on the cradle. The inserter also includes a first parts and second part, whereby the first part includes a handle and the second part comprises the entire insertion mechanism, whereby the first and second part are connected via an indentation.
Abstract:
An analysis system for analyzing biological samples, such as body fluids, methods implemented by the analysis system, and a computer program product for implementing the analysis system are disclosed. The system may include first and second lab devices, at least one of the lab devices may have a user identification component for identifying a user, a device identification component for identifying the lab device, and an interface component for sending a user identifier of the identified user and a device identifier of the lab device. The system may include a server computer having a server interface component for receiving the user identifier and the device identifier, and a processing component for determining a step of a workflow to be executed by the identified user, wherein the server interface component is operable to send a signal being indicative of a determined workflow to the lab device identified by the device identifier.
Abstract:
A sensor insertion assembly comprising a sensor cartridge having an insertion needle and a sensor within a sterile capsule. The sensor insertion assembly further comprises an inserter comprising a chamber for receiving the sensor cartridge, wherein the inserter further comprises an insertion mechanism operable for actuating the insertion needle for inserting the sensor into a subject. The sensor cartridge is removable from the chamber. The sensor cartridge is operable for shielding the insertion needle upon removal of the sensor cartridge from the chamber.
Abstract:
A tube rotator for rotating test tubes arranged in a tube rack as well as a system and process for reading information of machine-readable labels of the test tubes are disclosed. The tube rotator may comprise a pivoted lever having two lever arms, a friction wheel rotatably fixed to one lever arm and arranged to be brought in or out of contact with at least one test tube for rotating the test tube by friction. A first actuator may be rotatably coupled to the friction wheel, and a pretensioner which is capable of generating a pretensioning force may act on the lever for pivoting the lever in one pivoting direction. An eccentric may be rotatably fixed with respect to the base and arranged to roll off the other lever arm for pivoting the lever in another pivoting direction. A second actuator may be rotatably coupled to the eccentric.
Abstract:
An analyte test sensor strip is disclosed having information coded thereon as well as a method of forming the same and conducting an analyte test using the analyte test sensor strip. Information relating to an attribute of the strip or batch/lot of strips may be coded based on resistance values pertaining to electrical aspects of the strip, such as a primary resistive element and a secondary resistive element, the secondary resistive element having one of a plurality of states defined by a location of a closed tap to form a unique resistive path for the secondary resistive element that includes a portion of the primary resistive element depending on the location of the closed tap. The states may be formed on the strip by a secondary processing step in the manufacture of the strip in which a plurality of taps are severed leaving only one tap in a closed state.
Abstract:
A computer-implemented method is presented for synchronizing time between two handheld medical devices that interoperate with each other. The method includes: determining a first time as measured by a first clock residing in the first medical device; determining a second time as measured by a second clock residing in a second medical device; evaluating whether the first clock is synchronized with the second clock; determining whether at least one of the first clock and the second clock was set manually by a user; and setting time of the first clock in accordance with the second time when the second clock was set manually by the user.