Abstract:
A method for fabricating infrared sensors is disclosed. a chalcogenide layer is initially deposited on a substrate. A group of vias is then formed within the chalcogenide layer. After the vias have been converted to a group of studs, a vanadium oxide layer is deposited on the chalcogenide layer covering the studs. Next, the vanadium oxide layer is separated into multiple vanadium oxide membranes. After the chalcogenide layer has been removed, each of the vanadium oxide membranes is allowed to be freestanding while only supported by a corresponding one of the studs. The vanadium oxide membranes will be used as infrared sensors.
Abstract:
A front-end signal generator for hardware-in-the-loop simulators of a simulated missile is disclosed. The front-end signal generator is driven by the Digital Scene And Reticle Simulation-Hardware In The Loop (DSARS-HITL) simulator. The simulator utilizes a computer to calculate irradiance on an Electro-Optical/Infrared (EO/IR) detector. The generator converts irradiance values into voltages that are injected into the missile's electronics during simulation. The conversion is done with low latency and a high dynamic range sufficient for hardware-in-the-loop simulation. The generator is capable of emulating laser pulse inputs that would be present during laser-based jammer countermeasures. Computer control of the generator occurs via front-panel-data-port (FPDP).
Abstract:
A method for manufacturing an electronic multi-chip module that involves stacking at least six tested devices to form the module. These devices may be individually tested prior to assembling the electronic module. After individually testing the devices, the devices may be stacked one on top of the other to form an electronic multi-chip module having at least six stacked devices. Other embodiments may be described and claimed.
Abstract:
A nanostructure and method for assembly thereof are disclosed. An exemplary nanostructure includes a photocatalytic nanoparticle; a first tier of metal nanoparticles, each metal nanoparticle of the first tier being linked about the photocatalytic nanoparticle; and a second tier of metal nanoparticles, each metal nanoparticle of the second tier being linked to one of the metal nanoparticles of the first tier and located a distance from the photocatalytic nanoparticle greater than a distance between a metal nanoparticle of the first tier and the photocatalytic nanoparticle.
Abstract:
An apparatus for optical spectrometry utilizes a simplified construction, reducing the number of independent optical elements needed while providing a sizeable dispersed spectrum. The apparatus provides a spectral intensity distribution of an input source wherein individual spectral components in the source can be measured and, in some embodiments, can be manipulated or filtered.
Abstract:
A specific emitter identification (SEI) method and apparatus is capable of identifying and tracking objects within a geographical area of interest wherein the system and method has not been preprogrammed to look for particular signals. The system and method receives all of the emitted electromagnetic signals emitted from area of interest. The system and method next performs high order statistical analysis on the received signals and determines which signals emanate from possible targets of interest and which likely emanate from background clutter/noise by comparing the relative degrees of Gaussianness of the signals (for example using entropy measurements). The least Gaussian signals are deemed to likely be signals from potential targets of interest while those which are more Gaussian are deemed to be likely from background clutter or noise.
Abstract:
The system contains a lamination press. The first cavity is formed in a chassis. A film assembly is fitted within the chassis. A buffer mounts over the film assembly and within the chassis. A tool set is shaped to fit within the first cavity. The tool set and chassis are positioned within the lamination press to confer heat and pressure from the lamination press to the film assembly and chassis.
Abstract:
A single aperture three channel optical system is disclosed. In one embodiment, the optical system includes a front optical group and a back optical group that is disposed in substantially close proximity to the front optical group. Further, the optical system includes a first sensor, a second sensor, and a third sensor. The front optical group and the second optical group receives an object beam and splits into a reflected beam having first wavelengths and a transmitted beam of second wavelengths. Furthermore, the front optical group and the second optical group splits the reflected beam having first wavelengths into a transmitted beam having third wavelengths and a reflected beam having fourth wavelengths. The first sensor, the second sensor and the third sensor receive the transmitted beam of second wavelengths, transmitted beam of third wavelengths, and reflected beam of fourth wavelengths, respectively and produce the coaxial three channel images.
Abstract:
In the method of wide area airborne surveillance, the improvement comprising a single focal plane array camera assembly, said assembly comprising two points of rotation and capable of mapping a plurality of exposures to form one wide area airborne image.
Abstract:
A device that filters optical signals using a waveguide having a slotted optical pathway. The shape of the optical pathway passively restricts at least one optical signal from traveling through the waveguide. The device can also be used to reference the phase of an optical signal in an optical circuit.