Abstract:
A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and an annulated cyclopentadienyl ligand that is pi-bonded to the metal. A one-pot method for making organometallic complexes from fulvene precursors is also disclosed. Additionally, the invention includes bimetallic complexes from cyclopentazulenyl compounds and a one-pot method for making them. Molecular modeling studies reveal that organometallic complexes incorporating such annulated cyclopentadienyl ligands, when combined with an activator such as MAO, should actively polymerize olefins.
Abstract:
A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with two halogenating/titanating agents, the second stronger than the first, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
Abstract:
A composition useful as an addition polymerization catalyst comprising: A) an inert support; B) a Group 3-10 or Lanthanide metal complex; and C) an activator compound capable of causing the metal complex B) to form an active polymerization catalyst, said compound corresponding to the formula: (A*+a)b(Z*J*j)−cd, (I) wherein: A* is a cation of charge +a, Z* is an anion group of from 1 to 50, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid coordinated to at least one Lewis base-site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d.
Abstract:
A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
Abstract:
A process for the production of an ionic transition metal catalyst in supported form than is highly productive under gas phase olefin polymerization conditions. In the process a an aluminum alkyl is added to a suitable solvent after which a neutral metallocene compound is added to the solution under stirring in a quantity that provides for a ratio of Al to transition metal of at least 25:1. To this metallocene-aluminum alkyl solution is next added an ionic compound the anionic portion of which is a non-coordinating anion under stirring until all materials are dissolve. The ionic compound is added in a quantity that provides for a ratio of NCA to transition metal of at least 1:1. Next the support particles are added to the solution and thereafter the solution is heated to at least 40° C. and held at this elevated temperature for at least 0.5 hour. Thereafter the solvent is removed and the supported catalyst is dried under vacuum.
Abstract:
A catalyst component for the (co)polymerization of olefins is provided. The catalyst comprises titanium, magnesium halogen and a mixed electron-donor and a catalyst for the (co)polymerization of olefins comprising:(A) the catalyst component; (B) an organic aluminum compound; and (C) an organic silicon compound. A polymer with high and adjustable stereospecificity and broad molecular weight distribution can be prepared by using the catalyst.
Abstract:
A catalyst system for the (co)polymerization of propylene contains (A) a solid catalyst component comprising titanium, magnesium, halogen and a 1,3-diether; (B) an organic aluminum compound; and optionally (C) an organic silicon compound. In comparison with the prior art, stereospecificity of the polymer prepared by using the catalyst system of this invention evenl containing no external electron-donor is greater than 99%. Also, the activity of the catalyst system and hydrogen gas adjustability on the molecular weight of the polymer do not significantly decrease.
Abstract:
Solid polymeric onium poly(hydrogen fluoride) complexes disclosed herein can be used for alkylating aliphatic or aromatic hydrocarbons with olefins. These solid polymeric complexes can be formed by a process of contacting a source of hydrogen fluoride with a homopolymer or copolymer containing in at least one repeat unit, a nitrogen, phosphorus, or sulfur atom, capable of forming an onium fluoride moiety upon reaction or complexation with the hydrogen fluoride source.
Abstract:
A novel supported ionic liquid moiety which may further comprise immobilized ionic fluids and catalytic material is described. A method for making the composition is also described.