Abstract:
A facile mechanochemical intercalation approach was adopted to immobilize ionic liquids into layered materials. The immobilized ionic liquids were found to be useful as catalysts for the coupling reaction of CO2 and propylene oxide to synthesize propylene carbonate. The immobilized ionic liquid exhibited similar reactivity as the free ionic liquid. Overall, the 10 mechanochemical approach proves to be effective in immobilizing ionic liquids in layered compounds and thus may expand the applications of ionic liquids and, meanwhile, improve catalyst separation and recycling.
Abstract:
A process for isomerization of tetrahydrodicyclopentadiene using a supported acidic ionic liquid as catalyst is provided. In the presence of the supported acidic ionic liquid, endo-tetrahydrodicyclopentadiene is isomerized to exo-tetrahydrodicyclo-pentadiene, wherein the supported acidic ionic liquid includes a porous support and an acidic ionic liquid, and the acidic ionic liquid includes an aluminum halide, and a quaternary ammonium halide or a quaternary phosphonium halide. The porous support is impregnated with the acidic ionic liquid. Furthermore, under different reaction conditions, the exo-tetrahydrodicyclopentadiene product can be isomerized to adamantane in the presence of such a supported acidic ionic liquid.
Abstract:
A novel supported ionic liquid moiety which may further comprise immobilized ionic fluids and catalytic material is described. A method for making the composition is also described.
Abstract:
A catalyst complex for catalysis of degradation of a polymer material is described. Said complex comprises a magnetic particulate body containing iron oxide at its surface with an average diameter of 150-450 nm, and a plurality of catalytic groups grafted onto the iron oxide surface of the magnetic particulate body, which catalytic groups comprise a bridging moiety and a catalyst entity, wherein the bridging moiety comprises a functional group for adhesion or bonding to the iron oxide surface and a linking group towards the catalyst entity, and wherein the catalyst entity comprises a positively charged aromatic heterocycle moiety, and a negatively charged moiety for balancing the positively charged aromatic moiety.
Abstract:
A method of degrading a polymer into oligomers and/or monomers in a solvent, using a catalyst, and a functionalized magnetic particle comprising a catalyst being capable of degrading the polymer into oligomers and/or monomers. The present method and particle provide a high selectivity and a high conversion ratio.
Abstract:
The present invention discloses a method for preparing isocyanates by liquid-phase catalytic thermal cracking. In this method, in a reaction-rectification thermal cracking reactor, using a catalyst composition comprising a superfine powder metal oxide catalyst and an ionic liquid, an alkyl or aryl dialkylurethane, or multialkylurethane being a reactant is liquid-phase thermal cracked for a reaction time of 0.5-3 h under a reaction temperature of 160-220° C. and an absolute pressure of 1000-8000 Pa so as to prepare the corresponding isocyanate. The invention has the characteristics of low thermal cracking temperature, high yield of target products, relatively simple reaction apparatus and good universality for substrates (the yields of HDI, MDI, TDI, HMDI, NDI and IPDI or the like are all>85%) and the like.
Abstract:
The present invention provides a composition comprising: a) an inert porous support material, b) an ionic liquid, c) a metal selected from group 9 of the Periodic Table of the Elements, d) a phosphorus-containing organic ligand, e) at least one organic amine. The present invention further provides a process for hydroformylating olefin-containing hydrocarbon mixtures to aldehydes with addition of the inventive composition as a catalytically active composition, wherein: a) the water content of the olefin-containing hydrocarbon mixture is adjusted to not more than 20 ppm, b) the content of polyunsaturated compounds in the olefin-containing hydrocarbon mixture is adjusted to not more than 3000 ppm, c) a molar ratio of organic amines according to claims 10-13 to phosphorus-containing organic ligands according to claims 8-9 of at least 4:1 is established, d) a molar ratio of phosphorus-containing organic ligands according to claims 8-9 to rhodium of at least 10:1 is established.
Abstract:
Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO−, H2CO, (HCO2)−, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO−, CH3COOH, C2H6, (COOH)2, or (COO−)2, and a specific device, namely, a CO2 sensor.
Abstract:
A chemical reactor, comprising: a) an ionic liquid, supported on a porous solid; and b) a Brønsted acid; wherein the ionic liquid serves as an adsorbent and promoter for the Brønsted acid, and the Brønsted acid is a catalyst for alkylation, oligomerization, or a combination thereof of a hydrocarbon mixture comprising at least one alkylatable hydrocarbon and at least one alkylating agent in the chemical reactor. Also, a chemical reactor, comprising: a) a gaseous HCl, which is a catalyst for oligomerization of olefins; b) a chloroaluminate ionic liquid, supported on a porous solid, wherein the chloroaluminate ionic liquid serves as an adsorbent and promoter for the catalyst; and c) a volatile hydrocarbon, which evaporates to control a heat of reaction in the chemical reactor.
Abstract:
An electrocatalytic device for carbon dioxide conversion includes a cathode with a Catalytically Active Elementa metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO−, H2CO, (HCOO)−, HCOOH, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO−, CH3COOH, C2H6, (COOH)2, (COO−)2, and CF3COOH.