Method for preparing metal-matrix composite and device for implementing said method
    281.
    发明授权
    Method for preparing metal-matrix composite and device for implementing said method 有权
    制备金属基复合材料的方法及其实施方法

    公开(公告)号:US08329093B2

    公开(公告)日:2012-12-11

    申请号:US11817335

    申请日:2006-03-14

    Inventor: Jacques Tschofen

    Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.

    Abstract translation: 公开了一种制备金属基复合材料的方法,包括预先混合的粉末的冷加工等静压缩和所得到的压块的热加工单轴压制。 该方法能够获得具有改进性能的金属基复合材料。 还公开了一种用于实现等静压缩的装置,其包括其中注入有粉末混合物的胶乳护套,其中布置有胶乳护套的穿孔圆柱形容器,以及用于密封绝缘包含在护套中的粉末混合物的装置。

    Free-machining powder metallurgy steel articles and method of making same
    282.
    发明授权
    Free-machining powder metallurgy steel articles and method of making same 有权
    自由加工粉末冶金钢制品及其制造方法

    公开(公告)号:US08282701B2

    公开(公告)日:2012-10-09

    申请号:US12558066

    申请日:2009-09-11

    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.

    Abstract translation: 公开了一种包括完全固结的预合金金属粉末的小直径细长钢制品。 固结的金属粉末具有根据ASTM标准规范E 112确定时具有基本均匀分布的具有不大于约9的粒度的微细颗粒的微结构。固结金属粉末的微结构进一步的特征在于具有 多个基本上球形的碳化物均匀分布在整个金属粉末中,其主要尺寸不大于约6微米,并且多个硫化物均匀分布在整个固结的金属粉末中,其中硫化物在主要尺寸上不大于约2微米。 还公开了制造细长钢制品的方法。

    RECYCLING OF TUNGSTEN CARBIDES
    283.
    发明申请
    RECYCLING OF TUNGSTEN CARBIDES 失效
    铁素体的回收

    公开(公告)号:US20120251380A1

    公开(公告)日:2012-10-04

    申请号:US13500313

    申请日:2010-10-26

    Inventor: Johan Arvidsson

    Abstract: The invention relates to a process for producing an iron-and/or tungsten containing powder or powder agglomerate including the steps of: a) mixing at least a first powder fraction comprising a tungsten carbide containing powder, and at least a second powder fraction comprising an iron oxide powder and/or a tungsten oxide containing powder and optionally an iron powder, the weight of the first fraction being in the range of 50-90% by weight of the mix and the weight of the second fraction being in the range of 10-50% by weight of the mix, b) heating the mix of step a) to a temperature in the range of 400-1300° C., preferably 1000-1200° C. The invention also relates to an iron-and/or tungsten containing powder or powder agglomerate.

    Abstract translation: 本发明涉及一种生产含铁和/或钨的粉末或粉末附聚物的方法,包括以下步骤:a)将包含含碳化钨的粉末的至少第一粉末部分和至少包含第 氧化铁粉末和/或含氧化钨粉末和任选的铁粉末,第一部分的重量在混合物的50-90重量%的范围内,第二部分的重量在10 -50重量%的混合物,b)将步骤a)的混合物加热至400-1300℃,优选1000-1200℃的温度。本发明还涉及铁和/或 含钨粉末或粉末附聚物。

    POWDER FOR MAGNET
    284.
    发明申请
    POWDER FOR MAGNET 有权
    磁粉粉

    公开(公告)号:US20120244030A1

    公开(公告)日:2012-09-27

    申请号:US13513677

    申请日:2010-12-02

    Applicant: Toru Maeda

    Inventor: Toru Maeda

    Abstract: Provided are a powder for a magnet, which provides a rare-earth magnet having excellent magnet properties and which has excellent formability, a method for producing the powder for a magnet, a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material which are used as materials for the magnet, and methods for producing the powder compact and these alloy materials. Magnetic particles 1 constituting the powder for a magnet each have a texture in which grains of a phase 3 of a hydride of a rare-earth element are dispersed in a phase 2 of an iron-containing material, such as Fe. The uniform presence of the phase 2 of the iron-containing material in each magnetic particle 1 results in the powder having excellent formability, thereby providing a powder compact 4 having a high relative density. The powder for a magnet is produced by heat-treating a rare-earth-iron-based alloy powder in a hydrogen atmosphere to separate the rare-earth element and the iron-containing material from each other and then forming a hydride of the rare-earth element. The powder for a magnet is subjected to compacting to form the powder compact 4. The powder compact 4 is subjected to heat treatment in vacuum to form a rare-earth-iron-based alloy material 5. The rare-earth-iron-based alloy material 5 is subjected to heat treatment in a nitrogen atmosphere to form a rare-earth-iron-nitrogen-based alloy material 6.

    Abstract translation: 提供一种用于磁体的粉末,其提供具有优异的磁性能并且具有优异的成形性的稀土磁体,用于制造用于磁体的粉末的方法,粉末压块,稀土 - 铁基合金材料, 以及作为磁铁材料使用的稀土 - 铁 - 氮系合金材料以及这些合金材料的制造方法。 构成磁体用粉末的磁性粒子1具有将稀土类元素的氢化物的相3的粒子分散在Fe等含铁材料的相2中的结构。 每个磁性颗粒1中含铁材料的相2的均匀存在导致具有优异成形性的粉末,从而提供具有高相对密度的粉末压块4。 通过在氢气氛中对稀土类铁系合金粉末进行热处理,将稀土类元素和含铁物质分离,然后形成稀土类铁系合金粉末, 地球元素 对磁体粉末进行压实以形成粉末压块4.粉末压块4在真空中进行热处理以形成稀土 - 铁基合金材料5.稀土 - 铁基合金 材料5在氮气气氛中进行热处理,形成稀土 - 铁 - 氮基合金材料6。

    Preparation of rare earth permanent magnet material
    285.
    发明授权
    Preparation of rare earth permanent magnet material 有权
    稀土永磁材料的制备

    公开(公告)号:US08211327B2

    公开(公告)日:2012-07-03

    申请号:US10572753

    申请日:2005-03-22

    Abstract: A method for preparing a rare earth permanent magnet material comprising the steps of: disposing a powder comprising one or more members selected from an oxide of R2, a fluoride of R3, and an oxyfluoride of R4 wherein R2, R3 and R4 each are one or more elements selected from among rare earth elements inclusive of Y and Sc on a sintered magnet form of a R1—Fe—B composition wherein R1 is one or more elements selected from among rare earth elements inclusive of Y and Sc, and heat treating the magnet form and the powder at a temperature equal to or below the sintering temperature of the magnet in vacuum or in an inert gas. The invention offers a high performance, compact or thin permanent magnet having a high remanence and coercivity at a high productivity.

    Abstract translation: 一种制备稀土永磁材料的方法,包括以下步骤:设置包含一种或多种选自R 2的氧化物,R 3的氟化物和R 4的氟氧化物的一种或多种的粉末,其中R 2,R 3和R 4各自为一个或 选自包含Y和Sc的稀土元素中的更多元素是R1-Fe-B组合物的烧结磁体形式,其中R1是选自包括Y和Sc的稀土元素中的一种或多种元素,并且对磁体进行热处理 在等于或低于磁体在真空或惰性气体中的温度的温度下形成粉末。 本发明以高生产率提供具有高剩磁和矫顽力的高性能,紧凑或薄的永久磁铁。

    Cermet insert and cutting tool
    288.
    发明授权
    Cermet insert and cutting tool 有权
    金属陶瓷刀片和刀具

    公开(公告)号:US08007561B2

    公开(公告)日:2011-08-30

    申请号:US11917472

    申请日:2006-06-13

    Abstract: A cermet insert having a structure composed of a hard phase and a binding phase and, as a sintered body composition, containing Ti, Nb and/or Ta, and W in a total amount of Ti in terms of carbonitride, Nb and/or Ta in terms of carbide and W in terms of carbide of 70 to 95 wt. % of an entirety of the microstructure, and containing W in terms of carbide in an amount of 15 to 35 wt. % of the entirety of the microstructure, the sintered body composition further containing Co and/or Ni. The hard phase has one or two or more of the phases: (1) a first hard phase of a core-having structure whose core portion contains a titanium carbonitride phase and a peripheral portion containing a (Ti, W, Ta/Nb)CN phase, (2) a second hard phase of a core-having structure whose core portion and peripheral portion both contain a (Ti, W, Ta/Nb)CN phase, and (3) a third hard phase of single-phase structure including a titanium cabonitride phase. Moreover, the titanium carbonitride phase includes a W-rich phase unevenly distributed in the titanium carbonitride phase.

    Abstract translation: 具有由硬质相和结合相构成的结构的金属陶瓷插入体,作为烧结体组合物,以碳氮化物,Nb和/或Ta为基准,含有Ti,Nb和/或Ta的总和量为Ti 以碳化物计,W为70〜95重量%。 微观结构的整体的%,以碳化物计,W为15〜35重量%。 微结构整体的%,烧结体组合物还含有Co和/或Ni。 硬相具有一个或两个以上的相:(1)核心部分含有碳氮化钛相的核心结构的第一硬质相和包含(Ti,W,Ta / Nb)CN (2)具有核心部分和周边部分都包含(Ti,W,Ta / Nb)CN相的核心结构的第二硬相,和(3)第三硬相的单相结构,包括 钛白云母相。 此外,碳氮化钛相包括不均匀分布在碳氮化钛相中的富W相。

    Piston for internal-combustion engines
    289.
    发明授权
    Piston for internal-combustion engines 有权
    内燃机活塞

    公开(公告)号:US08001947B2

    公开(公告)日:2011-08-23

    申请号:US12227433

    申请日:2007-05-22

    Abstract: Disclosed is a piston for internal-combustion engines, which includes a low thermal-conductive member disposed at the top portion thereof, the low thermal-conductive member including an alloy containing Fe and Mn. The low thermal-conductive member includes a sintered body having 10˜60 mass % of Mn, 2 mass % or less of C, and the balance of Fe and inevitable impurities. Since the piston has the low thermal-conductive member having low thermal conductivity and thermal expansion properties similar to those of the aluminum alloy, which is the base metal of the piston, an increase in the temperature of a combustion chamber and vaporization of fuel are effectively promoted. Furthermore, thermal fatigue failure and separation of the low thermal-conductive member are prevented.

    Abstract translation: 公开了一种用于内燃机的活塞,其包括设置在其顶部的低导热构件,低导热构件包括含有Fe和Mn的合金。 低导热构件包括具有10〜60质量%的Mn,2质量%以下的C,余量为Fe和不可避免的杂质的烧结体。 由于活塞具有与作为活塞的贱金属的铝合金相似的导热性和热膨胀性低的低导热构件,因此燃烧室的温度升高和燃料蒸发有效 晋升 此外,防止热疲劳破坏和低导热构件的分离。

    ORDERED POROUS MESOSTRUCTURED MATERIALS FROM NANOPARTICLE-BLOCK COPOLYMER SELF-ASSEMBLY
    290.
    发明申请
    ORDERED POROUS MESOSTRUCTURED MATERIALS FROM NANOPARTICLE-BLOCK COPOLYMER SELF-ASSEMBLY 有权
    来自纳米嵌段共聚物的自组装多孔结构材料自组装

    公开(公告)号:US20110130478A1

    公开(公告)日:2011-06-02

    申请号:US12812714

    申请日:2009-01-13

    Abstract: The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

    Abstract translation: 本发明提供介孔结构材料和制备介孔结构材料的方法,包括富金属介孔结构的纳米颗粒 - 嵌段共聚物杂化物,多孔金属 - 非金属纳米复合材料结构和具有均匀孔的有序金属介孔结构。 纳米颗粒可以是金属,金属合金,金属混合物,金属间化合物,金属碳,金属陶瓷,半导体 - 碳,半导体 - 陶瓷,绝缘体 - 碳或绝缘体陶瓷纳米颗粒或其组合。 浇铸嵌段共聚物/配体稳定的纳米颗粒溶液,导致形成富含金属(或富含半导体的或富含绝缘体的)介孔结构的纳米颗粒 - 嵌段共聚物杂化物。 将混合物加热到升高的温度,导致形成有序的多孔纳米复合材料的介孔结构。 然后去除非金属组分(例如碳或陶瓷)以产生具有有序和大的均匀孔的有序介孔结构。

Patent Agency Ranking