Abstract:
One or more techniques and/or systems are described for inspecting an object, such as a tire. The system comprises a radiation imaging system configured to examine the object via radiation to generate a radiation image depicting an interior aspect of the object and a machine vision system configured to measure visible light and/or infrared wavelengths to generate a vision image depicting an exterior aspect of the object. The radiation image and the vision image may be correlated to facilitate an inspection of the object which includes an inspection of the exterior aspect as well as the interior aspect.
Abstract:
Among other things, a detector unit for a detector array of a radiation imaging modality is provided. In some embodiments, the detector unit comprises a radiation detection sub-assembly and an electronics sub-assembly. In some embodiments, at least some portions of the detector unit, such as the electronics sub-assembly, may be formed via a semiconductor fabrication technique. By way of example, an electronics sub-assembly may be formed via a semiconductor fabrication technique and may comprise electronic circuitry which is embedded in a molding compound. In some embodiments, such electronic circuitry may be electrically coupled together via electrically conductive traces and/or vias.
Abstract:
Representations of an object in an image generated by an imaging apparatus can comprise two or more separate sub-objects, producing a compound object. Compound objects can negatively affect the quality of object visualization and threat identification performance. As provided herein, a compound object can be separated into sub-objects. Three-dimensional image data of a potential compound object is projected into a two-dimensional manifold projection, and segmentation is performed on the two-dimensional manifold projection of the compound object to identify sub-objects. Once sub-objects are identified, the two-dimensional, segmented manifold projection is projected into three-dimensional space. A three-dimensional segmentation may then be performed to identify additional sub-objects of the compound object that were not identified by the two-dimensional segmentation.
Abstract:
A receiving antenna for wirelessly receiving data between a stator of a computed tomography (CT) imaging modality and a rotor of the CT imaging modality is provided. The rotor rotates about a rotational axis. The receiving antenna includes a dielectric portion and a conductive portion coupled to the dielectric portion. A second surface of the conductive portion extends between a first end and a second end along a conductive axis that is substantially perpendicular to the rotational axis. The second surface of the conductive portion has a first length at a first length location along a first length axis that is substantially parallel to the conductive axis. The second surface of the conductive portion has a second length at a second length location along a second length axis that is substantially parallel to the conductive axis. The first length is different than the second length.
Abstract:
Representations of an object in an image generated by an imaging apparatus can comprise two or more separate sub-objects, producing a compound object. Compound objects can negatively affect the quality of object visualization and threat identification performance. As provided herein, a compound object can be separated into sub-objects. Three-dimensional image data of a potential compound object is projected into a two-dimensional manifold projection, and segmentation is performed on the two-dimensional manifold projection of the compound object to identify sub-objects. Once sub-objects are identified, the two-dimensional, segmented manifold projection is projected into three-dimensional space. A three-dimensional segmentation may then be performed to identify additional sub-objects of the compound object that were not identified by the two-dimensional segmentation.
Abstract:
Among other things, an electronics assembly within an imaging system is provided. The electronics assembly includes a circuit board assembly through which a signal is delivered. The circuit board assembly defines a heat transfer opening between a first side and a second side. An electronics component is electrically coupled to the first side of the circuit board assembly. A heat transfer component supports the electronics component. The heat transfer component includes a base portion coupled to the electronics component and to the circuit board assembly. The heat transfer component includes a heat dissipation portion extending through the heat transfer opening of the circuit board assembly. The heat dissipation portion dissipates heat generated by the electronics component.
Abstract:
A transport apparatus (114) of an X-ray inspection system (100) includes an inspection region (122) with an entrance (121) and an exit (123). The transport apparatus further includes a loading region (120) disposed at the entrance of the inspection region, the loading region. The loading region includes a first set of X-ray attenuating curtains (228, 230, 232, 234) and a first curtain mover (223), which moves the curtains of the first set of X-ray attenuating curtains into and out of the loading region between areas that support objects for inspection. The transport apparatus further includes a conveyor device (128) which moves an object for inspection residing in one of the areas from the loading region to the inspection region for inspection.
Abstract:
A computed tomography (CT) imaging modality includes a stator and a rotor that rotates relative to the stator. The CT imaging modality includes a radiation source and a detector array for detecting at least some of the radiation. A first data communication component is coupled to the stator or the rotor for transmitting data between the stator and the rotor. The first data communication component includes a first circuit board assembly including a first conductive layer and a first dielectric layer and a second circuit board assembly including a second conductive layer and a second dielectric layer. The second conductive layer of the second circuit board assembly faces the first conductive layer of the first circuit board assembly. An insulating layer is disposed between the first conductive layer of the first circuit board assembly and the second conductive layer of the second circuit board assembly.
Abstract:
A method includes obtaining real-time imaging data of a least a sub-portion of an object and a region of interest therein. The method further includes displaying the real-time imaging data as the real-time imaging is obtained. The method further includes tracking extraction of a sample from the region of interest by an extraction device based on the real-time imaging data. The method further includes identifying an extraction location for the extracted sample based on the tracking and the real-time imaging data and generating a signal indicative thereof.
Abstract:
Among other things, a detector unit for a detector array of a radiation imaging modality is provided. In some embodiments, the detector unit comprises a radiation detection sub-assembly and an electronics sub-assembly. In some embodiments, at least some portions of the detector unit, such as the electronics sub-assembly, may be formed via a semiconductor fabrication technique. By way of example, an electronics sub-assembly may be formed via a semiconductor fabrication technique and may comprise electronic circuitry which is embedded in a molding compound. In some embodiments, such electronic circuitry may be electrically coupled together via electrically conductive traces and/or vias.