Abstract:
A cuff includes a cuff main body portion and a gripping portion provided on an outer peripheral surface of the cuff main body portion. The cuff main body portion includes an air bladder, a tightening belt wrapped around an outer side of the air bladder, and a wrapping length adjustment mechanism for variably adjusting a wrapping length of the tightening belt. The wrapping length adjustment mechanism has a bias spring for pulling and biasing the tightening belt in a direction in which the wrapping length of the tightening belt is shortened, a first restriction portion for restricting extension of the wrapping length, and a second restriction portion for restricting shortening of the wrapping length. The gripping portion includes a push button for switching actions of the two restriction portions. In this configuration, the cuff may be easily attached to a measurement site regardless of the circumferential length of the site.
Abstract:
Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly, a coiled tubing coupled to a bottom hole assembly, or a casing string coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, hardbanding on at least a portion of the exposed outer surface of the body assembly, an ultra-low friction coating on at least a portion of the hardbanding, wherein the ultra-low friction coating comprises one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion, and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
Abstract:
Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
Abstract:
An optical fiber connector includes a first protecting body and a second protecting body detachably assembled to the first protecting body. The first protecting body includes a first base plate and a first housing extending out from the first base plate. The first base plate defines a first receiving hole to communicate with the first housing. The second protecting body includes a second base plate and a second housing extending out from the second base plate. The second base plate defines a second receiving hole to communicate with the second housing. The second housing and the first housing together define an accommodating space therebetween.
Abstract:
A cuff includes a cuff main body portion and a gripping portion provided on an outer peripheral surface of the cuff main body portion. The cuff main body portion includes an air bladder, a tightening belt wrapped around an outer side of the air bladder, and a wrapping length adjustment mechanism for variably adjusting a wrapping length of the tightening belt. The wrapping length adjustment mechanism has a bias spring for pulling and biasing the tightening belt in a direction in which the wrapping length of the tightening belt is shortened, a first restriction portion for restricting extension of the wrapping length, and a second restriction portion for restricting shortening of the wrapping length. The gripping portion includes a push button for switching actions of the two restriction portions. In this configuration, the cuff may be easily attached to a measurement site regardless of the circumferential length of the site.
Abstract:
Various techniques for identifying a target worker group are described herein. In one example, a method includes detecting a response to a task from each worker in a group of workers and detecting a set of characteristics that correspond to each worker, wherein each characteristic comprises at least one attribute. The method can also include detecting a first attribute that corresponds to workers that provide responses with an accuracy above a threshold value. Furthermore, the method can include identifying the target worker group, the target worker group comprising the workers corresponding to the detected first attribute. The method may also include sending an additional task to the target worker group.
Abstract:
Provided are methods and systems for vacuum coating the outside surface of tubular devices for use in oil and gas exploration, drilling, completions, and production operations for friction reduction, erosion reduction and corrosion protection. These methods include embodiments for sealing tubular devices within a vacuum chamber such that the entire device is not contained within the chamber. These methods also include embodiments for surface treating of tubular devices prior to coating. In addition, these methods include embodiments for vacuum coating of tubular devices using a multitude of devices, a multitude of vacuum chambers and various coating source configurations.
Abstract:
Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated device includes one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more cylindrical bodies, and a coating on at least a portion of the inner surface, the outer surface, or a combination thereof of the one or more cylindrical bodies. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
Abstract:
Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.