Abstract:
Disclosed herein is a method of manufacturing a barrier rib for a plasma display panel, including a silicon compound resin. The method according to a first embodiment of this invention includes providing a silicon compound resin layer on a substrate; pressing the silicon compound resin layer using a master having a pattern corresponding to the shape of a barrier rib to be transferred; and curing the silicon compound resin and then releasing the master. In addition, the method according to a second embodiment includes loading a silicon compound resin into grooves of a master having a pattern corresponding to the shape of a barrier rib; pressing the master on a substrate to transfer the silicon compound to the substrate; and curing the transferred silicon compound resin and then releasing the master.
Abstract:
Provided is a dielectric/barrier rib composition for a plasma display panel, comprising a compound 1 of the formula or at least one compound belonging to a polyhedral oligosilsesquioxane (compound 2) having R6SiO1.5 as a repeating unit, or comprising inorganic/organic hybrid materials having compounds 1 and 2 as a monomer, wherein X is an integer inclusive 0, R1, R2, R3, R4, R5 and R6 are independently a linear, branched or cyclic C1-C12 hydrocarbon group containing one or more alkyl, alkoxy, ketone, acryl, methacryl, allyl, aromatic, halogen, amino, mercapto, ether, ester, sulfone, nitro, hydroxyl, cyclobutene, carbonyl, carboxyl, alkyd, urethane, vinyl, nitrile, hydrogen, or epoxy functional group, and A is oxygen or NH. The inorganic/organic hybrid materials can be a material composed of an extended matrix, containing silicon and oxygen or nitrogen atoms, and having at least one silicon fraction directly bonded to a substituted or unsubstituted hydrocarbon atom.
Abstract:
The present invention provides an inorganic/organic hybrid oligomer having silica or a complex of silica and a metal oxide present inside thereof and functional organic groups outside thereof, obtained by reacting: (i) Compound 1 and Compound 2; (ii) Compound 1 and Compound 3; or (iii) Compound 2 and Compound 3 with Compound 1; wherein Compound 1 is R1R2Si(OH)2, Compound 2 is (R3)a(R4)bM(OR5)(c-a-b), and Compound 3 is R6OH or R6COOH; a and b are each an integer between 0 and 3; c is an integer between 3 and 6; M is silicon, or a metal such as aluminum, titanium, zirconium, etc. that can be coordinated with ligands; provided that in the cases of (i), (ii) and (iii) at least one of R1, R2, R3, R4 and R6 has a polymerizable functional group; an inorganic/organic nano hybrid polymer prepared therefrom and a process for preparing the same.
Abstract:
Disclosed is a method of fabricating a flexible device, which includes surface-treating one or both sides of a carrier plate so that regions with different surface-treatments are formed on the same side of the carrier plate, forming a glass-filler reinforced plastic substrate film on the surface-treated carrier plate, forming thin film patterns on the glass-filler reinforced plastic substrate film, and separating the glass-filler reinforced plastic substrate film having the thin film patterns formed thereon from the carrier plate, and in which the surface-treating of the carrier plate enables the glass-filler reinforced plastic substrate film to be easily separated from the carrier plate without an additional process such as using a solvent or a laser release technique.
Abstract:
The present invention provides a fluorescent dye-silane hybrid resin manufactured by polycondensing an alkoxysilane bonded with a fluorescent dye with an organo-silane. More particularly, the present invention provides a fluorescent dye-siloxane hybrid resin that is manufactured by reacting a fluorescent dye having one or more functional groups with an alkoxysilane having an organic functional group to form an alkoxysilane bonded with the fluorescent dye and then polycondensing the alkoxysilane bonded with a fluorescent dye with an organo-silanediol and an organo-alkoxysilane having a thermocurable or ultraviolet-curable functional group without water. The fluorescent dye-silane hybrid resin has excellent thermostability, photostability, fluorescence characteristics, and processibility.
Abstract:
Provided are an aqueous solution composition for fluorine doped metal oxide semiconductor, a method for manufacturing a fluorine doped metal oxide semiconductor using the same, and a thin film transistor including the same. The aqueous solution composition for fluorine doped metal oxide semiconductor includes: a fluorine compound precursor made of one or two or more selected from the group consisting of a metal compound containing fluorine and an organic material containing fluorine; and an aqueous solution containing water or catalyst. The method for manufacturing a fluorine doped metal oxide semiconductor, includes: preparing an aqueous solution composition for fluorine doped metal oxide semiconductor, coating a substrate with the aqueous solution composition; and performing heat treatment on the coated substrate to form the fluorine doped metal oxide semiconductor. The thin film transistor of the present invention can exhibit excellent electrical properties even at a temperature for low-temperature annealing, as compared with the metal oxide semiconductor thin film transistor of the related art.
Abstract:
Provided is a solution composition for manufacturing a metal oxide semiconductor including aluminum salts, metal acetylacetonate and a solvent. In addition, provided is a method for manufacturing a metal oxide semiconductor, including: manufacturing of a metal oxide semiconductor by performing heat treatment after coating a solution composition for manufacturing the metal oxide semiconductor above a substrate. In addition, provided is a thin film transistor, including: a gate substrate; a metal oxide semiconductor manufactured to be overlapped with the gate substrate; a source electrode electrically connected to the metal oxide semiconductor; and a drain electrode that is electrically connected to the metal oxide semiconductor and faces the source electrode.
Abstract:
A thin-film transistor array panel includes: an insulating substrate; an oxide semiconductor layer that is formed on the insulating substrate and includes a metal inorganic salt and zinc acetate; a gate electrode overlapping with the oxide semiconductor layer; a gate insulating film that is interposed between the oxide semiconductor layer and the gate electrode; and a source electrode and a drain electrode that at least partially overlap the oxide semiconductor layer and are separated from each other.
Abstract:
Disclosed is a method of producing a planar multimode optical waveguide by direct photo-patterning and, more particularly, to an optical waveguide material and a method of producing the same. It is possible to control the refractive index of the optical waveguide, and the optical waveguide has a desirable refractive index distribution throughout different dielectric regions. In the method, it is unnecessary to conduct processes of forming a clad layer and of etching a core layer, thus a production process is simplified. The method comprises coating a photosensitive hybrid material having a refractive index or a volume changed by light radiation, in a thickness of 10 microns or more, and radiating light having a predetermined wavelength onto the coated photosensitive hybrid material to form the multimode optical waveguide due to a change in refractive index of a portion onto which light is radiated.
Abstract:
Disclosed are hydroxyl organic oligosiloxane resins prepared by hydrolysis-condensation of organic alkoxysilane and preparation method thereof. More particularly, the present invention provides a method for preparation of novel resins with excellent coating properties, mechanical properties and thermal stability, comprising use of a hydroxyl organic oligosiloxane resin which has a center of inorganic network structure with high condensation degree formed by complete hydrolysis-condensation, and at least one hydroxyl group and organic group or organic functional group around the center.