Abstract:
A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
Abstract translation:薄膜晶体管基板包括绝缘板; 设置在绝缘板上的栅电极; 包含金属氧化物的半导体层,其中所述金属氧化物具有小于或等于3%的氧缺陷,并且其中所述金属氧化物包含约0.01mol / cm 3至约0.3mol / cm 3的3d过渡金属; 设置在所述栅极电极和所述半导体层之间的栅极绝缘层; 以及设置在半导体层上的源电极和漏电极。 还描述了显示基板。 金属氧化物具有小于或等于3%的氧缺陷,并且掺杂有约0.01摩尔/ cm3至约0.3摩尔/ cm3的3d过渡金属。 金属氧化物包括氧化铟或二氧化钛。 3d过渡金属包括选自铬,钴,镍,铁,锰及其混合物中的至少一种3d过渡金属。
Abstract:
A method of manufacturing a thin film transistor (“TFT”) substrate includes forming a first conductive pattern group including a gate electrode on a substrate, forming a gate insulating layer on the first conductive pattern group, forming a semiconductor layer and an ohmic contact layer on the gate insulating layer by patterning an amorphous silicon layer and an oxide semiconductor layer, forming a second conductive pattern group including a source electrode and a drain electrode on the ohmic contact layer by patterning a data metal layer, forming a protection layer including a contact hole on the second conductive pattern group, and forming a pixel electrode on the contact hole of the protection layer. The TFT substrate including the ohmic contact layer formed of an oxide semiconductor is further provided.
Abstract:
In a method of manufacturing a photoelectric device, a transparent conductive layer is formed on a substrate, and the transparent conductive layer is partially etched using an etching solution including hydrofluoric acid. Thus, a transparent electrode having a concavo-convex pattern on its surface is formed. When the transparent conductive layer is partially etched, a haze of the transparent electrode may be controlled by adjusting an etching time of the transparent conductive layer. Also, since the etching solution is sprayed to the transparent conductive layer to etch the transparent conductive layer, the concavo-convex pattern on the surface of the transparent electrode may be easily formed even though the size of the substrate increases.
Abstract:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
Abstract:
A TFT includes a gate electrode, an active layer, a source electrode, a drain electrode, and a buffer layer. The gate electrode is formed on the substrate; the active layer is formed on the gate electrode. The source and drain electrodes, formed on the active layer, are separated by a predetermined distance. The buffer layer is formed between the active layer and the source and drain electrodes. The buffer layer has a substantially continuously varying content ratio corresponding to a buffer layer thickness. The buffer layer is formed to suppress oxidation of the active layer, and reduce contact resistance.
Abstract:
A TFT includes a gate electrode, an active layer, a source electrode, a drain electrode, and a buffer layer. The gate electrode is formed on the substrate; the active layer is formed on the gate electrode. The source and drain electrodes, formed on the active layer, are separated by a predetermined distance. The buffer layer is formed between the active layer and the source and drain electrodes. The buffer layer has a substantially continuously varying content ratio corresponding to a buffer layer thickness. The buffer layer is formed to suppress oxidation of the active layer, and reduce contact resistance.
Abstract:
A method of fabricating a thin film transistor substrate includes forming a gate wiring on an insulating substrate and forming a gate insulating layer on the gate wiring; performing a first hydrogen plasma treatment with respect to the gate insulating layer; forming a first active layer with a first thickness at a first deposition rate on the gate insulating layer; performing a second hydrogen plasma treatment with respect to the first active layer; and forming a second active layer with a second thickness greater than the first thickness at a second deposition rate greater than the first deposition rate, on the first active layer.
Abstract:
A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
Abstract translation:薄膜晶体管基板包括绝缘板; 设置在绝缘板上的栅电极; 包含金属氧化物的半导体层,其中所述金属氧化物具有小于或等于3%的氧缺陷,并且其中所述金属氧化物包含约0.01mol / cm 3至约0.3mol / cm 3的3d过渡金属; 设置在所述栅极电极和所述半导体层之间的栅极绝缘层; 以及设置在半导体层上的源电极和漏电极。 还描述了显示基板。 金属氧化物具有小于或等于3%的氧缺陷,并且掺杂有约0.01摩尔/ cm3至约0.3摩尔/ cm3的3d过渡金属。 金属氧化物包括氧化铟或二氧化钛。 3d过渡金属包括选自铬,钴,镍,铁,锰及其混合物中的至少一种3d过渡金属。
Abstract:
The present invention relates to a thin film transistor, a method thereof and an organic light emitting device including the thin film transistor. According to an embodiment of the present invention, the thin film transistor includes a substrate, a control electrode, an insulating layer, a first electrode and a second electrode, a first ohmic contact layer and a second ohmic contact layer, and a semiconductor layer. The control electrode is formed on the substrate, and the insulating layer is formed on the control electrode. The first and the second electrodes are formed on the insulating layer. The first ohmic contact layer and the second ohmic contact layer are formed on the first electrode and the second electrode. The semiconductor layer is formed on the first ohmic contact layer and the second ohmic contact layer to fill between the first and the second electrodes.
Abstract:
A method of fabricating a thin film transistor substrate includes forming a gate wiring on an insulating substrate and forming a gate insulating layer on the gate wiring; performing a first hydrogen plasma treatment with respect to the gate insulating layer; forming a first active layer with a first thickness at a first deposition rate on the gate insulating layer; performing a second hydrogen plasma treatment with respect to the first active layer; and forming a second active layer with a second thickness greater than the first thickness at a second deposition rate greater than the first deposition rate, on the first active layer.