Abstract:
Semiconductor devices and methods of fabricating semiconductor devices that may include forming an insulation structure including insulation patterns that are sequentially stacked and vertically separated from each other to provide gap regions between the insulation patterns, forming a first conductive layer filling the gap regions and covering two opposite sidewalls of the insulation structure, and forming a second conductive layer covering the first conductive layer. A thickness of the second conductive layer covering an upper sidewall of the insulation structure is greater than a thickness of the second conductive layer covering a lower sidewall of the insulation structure.
Abstract:
A transparent conductive layer includes a substrate, a first conductive layer disposed on the substrate, and a second conductive layer disposed on the first conductive layer, wherein the second conductive layer comprises a textured surface and an opening which exposes the first conductive layer, wherein the opening comprises a diameter of about 1 micrometer to about 3 micrometers. Also disclosed is a method of manufacturing the transparent conductive layer and a photoelectric device.
Abstract:
A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
Abstract:
A transparent conductive layer includes a substrate, a first conductive layer disposed on the substrate, and a second conductive layer disposed on the first conductive layer, wherein the second conductive layer comprises a textured surface and an opening which exposes the first conductive layer, wherein the opening comprises a diameter of about 1 micrometer to about 3 micrometers. Also disclosed is a method of manufacturing the transparent conductive layer and a photoelectric device.
Abstract:
A solar cell module includes a substrate, a lower electrode layer, a semiconductor layer and an upper electrode layer for an embodiment. The lower electrode layer may include a plurality of area-separating grooves separating the substrate into an active area and a peripheral area surrounding the active area, and a plurality of first cell-separating grooves formed in the active area. The semiconductor layer is formed on the lower electrode layer. The semiconductor layer includes a plurality of second cell-separating grooves that are spaced apart from the first cell-separating grooves. The upper electrode layer is formed on the semiconductor layer. The upper electrode layer includes a plurality of third cell-separating grooves that are spaced apart from the second separating grooves.
Abstract:
A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
Abstract:
In one or more embodiments of a photovoltaic device and a method of manufacturing the photovoltaic device, a first conductive layer, a first light-absorbing layer and a second conductive layer may be formed on a substrate, in sequence. A temperature for forming the second conductive layer may be lower than a temperature for forming the first conductive layer and a temperature for forming the first light-absorbing layer.
Abstract:
Photovoltaic devices and methods of manufacturing the same are provided. In one example, a photovoltaic device includes: a substrate; a transparent conductive layer deposited on the substrate; a semiconductor layer provided with a P layer, an I layer, and a N layer sequentially deposited on the transparent conductive layer; and a rear electrode deposited on the N layer of the semiconductor layer, wherein the P layer is a P-type oxide semiconductor.
Abstract:
A control method of a digital camera is provided. In the method, information regarding data stored in a recording medium is displayed, and data selected by a user is processed. The method includes reading the data stored in the recording medium, sorting the read data by date, displaying, sequentially by date, information regarding the sorted data, and not displaying the dates on which data was not stored. The read data is sorted by date and file type, and the information regarding the sorted data is displayed by file type. According to the method, a lot of information can be provided on the same screen, and a desired image can be easily accessed. In addition, a group of data stored in the recording medium can be processed at one time.