Abstract:
A display array which can reduce the row connections between the display and the driver circuit and methods of manufacturing and operating the same are disclosed. In one embodiment, a display device comprises an array of MEMS display elements and a plurality of voltage dividers coupled to the array and configured to provide row output voltages to drive the array, wherein each row is connected to at least two inputs joined by a voltage divider.
Abstract:
A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
Abstract:
Various embodiments include interferometric optical modulators comprising a substrate layer having a thickness between about 0.1 mm to about 0.45 mm thick and a method for manufacturing the same. The interferometric modulator can be integrated together with a diffuser in a display device. The thin substrate permits use of a thicker substrate. The thinner substrate may increase resolution and reduce overall thickness of the inteferometric modulator. The thicker diffuser may provide increased diffusion and durability.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A microelectromechanical systems device fabricated on a pre-patterned substrate having grooves formed therein. A lower electrode is deposited over the substrate and separated from an orthogonal upper electrode by a cavity. The upper electrode is configured to be movable to modulate light. A semi-reflective layer and a transparent material are formed over the movable upper electrode.
Abstract:
A composite display is disclosed. In some embodiments, a composite display includes a paddle configured to sweep out an area, a plurality of pixel elements mounted on the paddle, and one or more optical sensors mounted on the paddle and configured to measure luminance values of the plurality of pixel elements. Selectively activating one or more of the plurality of pixel elements while the paddle sweeps the area causes at least a portion of an image to be rendered.
Abstract:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
Abstract:
The invention comprises systems and methods determining residual stress such as that found in interferometric modulators. In one example, a test unit can be configured to indicate residual stress in a film by interferometrically modulating light indicative of an average residual stress in two orthogonal directions of the substrate. The test unit can include a reflective membrane attached to the substrate where membrane is configured as a parallelogram with at least a portion of each side attached to the substrate, and an interferometric cavity formed between a portion of the membrane and a portion of the substrate, and where the membrane is configured to deform based on the residual stress of in the film and modulate light indicative of the amount of membrane deformation.
Abstract:
Embodiments of the present disclosure include a method of fabricating interferometric devices using lift-off processing techniques. Use of lift-off processing in the fabrication of various layers of interferometric modulators, such as an optical stack or a flex layer, advantageously avoids individualized chemistries associated with the plurality of materials associated with each layer thereof. Moreover, use of lift-off processing allows much greater selection in both materials and facilities available for fabrication of interferometric modulators.
Abstract:
An interferometric modulating device is provided with a thermal expansion balancing layer on a side of the movable flexible layer opposite the movable reflector such that when temperature changes the distance between the movable reflector and the optical stack does not change significantly, thereby leading to stable color. Additionally, an interferometric modulating device is provided with a stiffening layer between the movable flexible layer and the movable reflector and at least one hollow void exists on the surface where the movable reflector and the stiffening layer contact each other so that the movable reflector is more rigid to bending, thereby reducing the temperature sensitivity of the movable reflector.