摘要:
Objective (1, 601), in particular a projection objective for a microlithography projection apparatus, with first birefringent lenses (L108, L109, L129, L130) and with second birefringent lenses (L101–L107, L110–L128). The first lenses (L108, L109, L129, L130) are distinguished from the second lenses (L101–L107, L110–L128) by the lens material used or by the material orientation. After passing through the first lenses (L108, L109, L129, L130) and the second lenses (L101–L107, L110–L128), an outer aperture ray (5, 7) and a principal ray (9) are subject to optical path differences for two mutually orthogonal states of polarization. The difference between these optical path differences is smaller than 25% of the working wavelength. In at least one first lens (L129, L130), the aperture angle of the outer aperture ray (5, 7) is at least 70% of the largest aperture angle occurring for said aperture ray in all of the first lenses (L108, L109, L129, L130) and second lenses (L101–L107, L110–L128). This arrangement has the result that the first lenses (L108, L109, L129, L130) have a combined material volume of no more than 20% of the combined total material volume of the first lenses (L108, L109, L129, L130) and second lenses (L101–L107, L110–L128).
摘要:
An optical system (1) includes a first optical subsystem (3) with at least a first birefringent optical element (7), and further includes a second optical subsystem (5) with at least a second birefringent optical element (9). Between the first optical subsystem and the second optical subsystem, an optical retarding system (13) with at least a first optical retarding element (15) is arranged, which introduces a retardation of one-half of a wavelength between two mutually orthogonal states of polarization.
摘要:
An optical system, in particular a projection objective, for microlithography, has an optical axis and at least one optical correction arrangement, which has a first optical correction element and at least one second optical correction element, wherein the first correction element is provided with a first aspherical surface contour, and wherein the second correction element is provided with a second aspherical surface contour, wherein the first surface contour and the second surface contour add up at least approximately to zero, wherein the correction arrangement has at least one drive for movement of at least one of the two correction elements. In this case, at least one of the two correction elements can rotate about a rotation axis which is at least approximately parallel to the optical axis, and the at least one drive is a rotary drive for rotation of one or both of the correction elements about the rotation axis.
摘要:
The disclosure relates to a method of manufacturing a polarization-modulating optical element, wherein the element causes, for light passing through the element and due to stress-induced birefringence, a distribution of retardation between orthogonal states of polarization, the method comprising joining a first component and a second component, wherein a non-plane surface of the first component being provided with a defined height profile is joined with a plane surface of the second component, whereby a mechanical stress causing the stress-induced birefringence is produced in the such formed polarization-modulating optical element.
摘要:
Projection objectives, as well as related components, systems and methods, are disclosed. In general, a projection objective is configured to image radiation from an object plane to an image plane. A projection objective can include a plurality of optical elements along the optical axis. The plurality of optical elements can include a group of optical elements and a last optical element which is closest to the image plane, and a positioning device configured to move the last optical element relative to the image plane. Typically, a projection objective is configured to be used in a microlithography projection exposure machine.
摘要:
In a method for describing, evaluating and improving optical polarization properties of a projection objective of a microlithographic projection exposure apparatus, the Jones or Stokes vectors are firstly determined at one or more points in the exit pupil of the projection objective. These are then described at least approximately as a linear superposition of predetermined vector modes with scalar superposition coefficients. The optical polarization properties can subsequently be evaluated on the basis of the superposition coefficients.
摘要:
A projection objective for a microlithographic projection exposure apparatus. The projection objective can project an image of a mask that can be set in position in an object plane onto a light-sensitive coating layer that can be set in position in an image plane. The projection objective can be designed to operate in an immersion mode, and it can produce at least one intermediate image. The projection objective can include an optical subsystem on the image-plane side which projects the intermediate image into the image plane with an image-plane-side projection ratio having an absolute value of at least 0.3.
摘要:
Projection objectives, as well as related components, systems and methods, are disclosed. In general, a projection objective is configured to image radiation from an object plane to an image plane. A projection objective can include a plurality of optical elements along the optical axis. The plurality of optical elements can include a group of optical elements and a last optical element which is closest to the image plane, and a positioning device configured to move the last optical element relative to the image plane. Typically, a projection objective is configured to be used in a microlithography projection exposure machine.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.