Abstract:
A thin film processing method for processing the thin film by irradiating an optical beam to the thin film. A unit of the irradiation of the optical beam includes a first and a second optical pulse irradiation to the thin film, and the unit of the irradiation is carried out repeatedly to process the thin film. The first and the second optical pulse have pulse waveforms different from each other. Preferably, a unit of the irradiation of the optical beam includes the a first optical pulse irradiated to the thin film and a second optical pulse irradiated to the thin film starting substantially simultaneous with the first optical pulse irradiation. In this case, the relationship between the first and the second optical pulse satisfies (the pulse width of the first optical pulse)
Abstract:
A solid immersion lens holder 8A is provided with a base part 50 attached to an objective lens 21, and a lens holding part 60 provided with the base part 50, extending in a direction of optical axis L of the objective lens 21, and arranged to hold a solid immersion lens 6 at an end portion thereof. The lens holding part holds the solid immersion lens so that light emerging from the solid immersion lens to the base part side travels through a region outside the lens holding part and toward the base part, and the base part has a light passing portion 53 which transmits the light toward the objective lens. Since the lens holding part extends in the direction of the optical axis L of the objective lens, even in a case where an observation object 11 is observed as located on a bottom surface of recess 13, the lens holding part will be prevented from contacting a side wall 13a of the recess. As a result, it becomes feasible to observe the observation object up to a region closer to the vicinity of peripheral part 11a of the observation object. This provides a solid immersion lens holder allowing observation up to a region closer to a peripheral part of an observation object even in a case where the observation object is set in a recess of a sample.
Abstract:
A thin film processing method for processing the thin film by irradiating an optical beam to the thin film. A unit of the irradiation of the optical beam includes a first and a second optical pulse irradiation to the thin film, and the unit of the irradiation is carried out repeatedly to process the thin film. The first and the second optical pulse have pulse waveforms different from each other. Preferably, a unit of the irradiation of the optical beam includes the a first optical pulse irradiated to the thin film and a second optical pulse irradiated to the thin film starting substantially simultaneous with the first optical pulse irradiation. In this case, the relationship between the first and the second optical pulse satisfies (the pulse width of the first optical pulse)
Abstract:
A thin-film transistor is provided which prevents the degradation of transistor characteristics due to ion channeling. A thin-film transistor (10) includes thin crystalline silicon (2) including source and drain regions (2a) and a channel region (2b), which are formed on a substrate (1); a gate insulator (3) formed on the crystalline silicon (2); and a gate electrode (4) formed on the gate insulator (3). The gate electrode (4) includes an amorphous layer (5) and a crystalline layer (6).
Abstract:
A pixel circuit substrate includes a first interlayer insulating film which is made of an inorganic material at least in a source and drain regions of a thin film transistor. A contact hole is formed in an area above the source and drain regions of a thin film transistor in the first interlayer insulating film. A wiring layer is formed on the first interlayer insulating film, extends to an inner wall and a bottom surface of the contact hole. On a top surface of the wiring layer is formed a recess reflecting the shape of a contact hole. A second interlayer insulating film is formed on the wiring layer, embedded in the recess and has a flat top surface in an area above the thin film transistor. A storage capacitor on the second interlayer insulating film is disposed in the area above the thin film transistor.
Abstract:
To provide an organic light-emitting device that exhibits the hue of light emission having extremely high purity and has a light output having high luminance and long life with a high degree of efficiency. The organic light-emitting device comprises at least a pair of electrodes consisting of an anode and a cathode and one or more organic compound-containing layers sandwiched between the pair of electrodes, wherein at least one of the above described organic compound-containing layers contains at least one compound selected from the group consisting of the compounds represented by the following general formula [1] and at least one compound selected from the group consisting of the compounds represented by the following general formula [2].
Abstract:
Source/drain diffusion layers and a channel region are formed in a polysilicon thin film formed on a substrate made of glass or the like, and furthermore, a gate electrode 6 is formed via a gate insulating film. A silicon hydronitride film is formed on the interlayer dielectric film, whereby the hydrogen concentration in an active element region including a switching thin film transistor can be maintained at a high level, and Si—H bonds in the silicon thin film become stable. In addition, by providing a ferroelectric film on the silicon hydronitride film via a lower electrode formed of a conductive oxide film, whereby the oxygen concentration of the ferroelectric capacitive element layer can be maintained at a high level, and generation of oxygen deficiency in the ferroelectric film is prevented.
Abstract:
A novel monoamino compound is provided. Using the monoamino compound, an organic luminescence device is provided, which exhibits a luminescence hue with extremely high purity, and having an optical output of a high luminance with a high efficiency and a long life time. The monoamino compound is represented by the following general formula [1].
Abstract:
There is provided an organic electroluminescent device including at least: a pair of electrodes including an anode and a cathode; one or more layers containing an organic compound interposed between the pair of electrodes; and a layer containing metallic boride provided between the cathode and one of the layers containing the organic compound. The organic electroluminescent device provides an electron injection material which has high chemical stability and is easy to control a composition of a film. The organic electroluminescent device has extremely high efficiency, a light output with high luminance, and extremely high durability.
Abstract:
In a thin film transistor provided with a metallic layer with a light-shading property and a Si layer formed on an insulating layer, a dent for locally thinning the insulating layer is formed on a portion corresponding to a drain region. When the Si layer is recrystallized by means of a laser light irradiation, the dent serves as a crystalline nucleus formation region in order to recrystallize a particular portion earlier than other portions. Recrystallization of melted Si starts from a periphery of a bottom surface of the dent, hence a Si layer formed of a single crystal or uniformed crystal grains which serves as an active region of the TFT can be obtained.