Abstract:
Clock gating analysis of a target circuit having a plurality of clock gates, involves the calculation of a clock gate function for each of the clock gates. The clock gate functions indicate an activation state of the clock gates and a combination of output values from sequential circuit elements in the target circuit are substituted into each of the clock gate functions to obtained clock gate function values. Combinations of the clock gate function values form individual clock gating states. Each clock gating state indicates an activation state of each of the local clocks, collectively. A table indicating correlations between the combinations of output values and the clock gating states is generated and from the conversion table, a group that includes all of the clock gating states possible is output.
Abstract:
In an LSI analysis apparatus, a logic element pair extracting unit extracts an unselected logic element pair when an input unit receives circuit description input. A searching unit searches for an input pattern causing the extracted pair to perform concurrent transition. When an input pattern causing concurrent transition is found, the searching unit determines the extracted pair to be a pair capable of concurrent transition (concurrent transition pair), and holds the input pattern causing concurrent transition. When an input pattern causing concurrent transition is not found, the searching unit determines the extracted pair to be a non-concurrent transition pair. An input pattern operation ratio calculating unit calculates an input pattern operation ratio for each input pattern causing concurrent transition. A detecting unit detects an input pattern yielding the highest input pattern operation ratio. An output unit puts out the detected input pattern, non-concurrent transition pairs, etc.
Abstract:
A selector selects an FF pair (FFs, FFe) in circuit information, a calculator calculates value-capturing condition data at FFe, a divider divides a path set that matches the value-capturing condition data from a set of paths between the FF pair (FFs, FFe), and a multi-cycle path detector determines whether all the paths in the path set are multi-cycle paths. When the path set is a multi-cycle path, it is added to a timing exception path list that is output by an output unit.
Abstract:
The present invention provides solid dispersions or solid dispersion pharmaceutical preparations containing a water-soluble polymeric substance(s) and a phenylalanine compound of the formula (1) or pharmaceutically acceptable salts thereof, wherein A represents the formula (2) and the like, B represent an alkoxy group and the like, E represents a hydrogen atom and the like, D represents a substituted phenyl group and the like, T, U and V represent a carbonyl group and the like, Arm represents a benzene ring and the like, R1 represents an alkyl group and the like, R2, R3, and R4 may be the same or different from one another and each represent a hydrogen atom, a substituted amino group and the like, and J and J′ represent a hydrogen atom and the like; production methods thereof; and solubilized pharmaceutical preparations containing a solubilizer(s) and the compound (I) or pharmaceutically acceptable salts thereof. According to the solid dispersion pharmaceutical preparations or solubilized pharmaceutical preparations, though they contain the phenylalanine compound of the formula (1) that is a poorly-soluble drug as an active ingredient, the pharmaceutical preparations having high solubility and oral absorbability can be obtained.
Abstract:
A separator for battery which exhibits a low electrical resistivity at normal time, good SD characteristics and a high mechanical strength is disclosed. A high molecular weight polypropylene having a weight average molecular weight of 500,000 or more and a polyethylene having a melting point of from 100.degree. to 140.degree. C. are extruded through a T-die film-forming machine to prepare a laminate film comprising a laminate of the high molecular polypropylene layer and the polyethylene layer. The laminate film is stretched at a temperature as low as from -20.degree. C. to 80.degree. C. by 10% to 100% based on the length of the original film, stretched at a temperature as high as 80.degree. C. to 130.degree. C. by 60% to 300% based on the length of the unstretched film, and then shrunk at the same temperature by 5% to 30% based on the length of the stretched film to render the film porous. Thus, a porous laminate film having a Gurley value of from 200 to 1,500 is prepared as a separator for battery.
Abstract:
This invention relates to a conducting organic polymer formed by doping an organic polymer with a protonic acid having a dissociation constant value pKa of less than 4.8, wherein the organic polymer has, as the main repeating unit, a compound represented by the general formula: ##STR1## wherein, m and n, respectively, show the molar fraction of the quinonediimine structural unit and phenylenediamine structural unit in the repeating unit, and 0
Abstract:
A lithium-ion battery cathode material includes a composite of sulfur and porous carbon, and glass particles and/or glass ceramic particles that satisfy a composition represented by the following formula (1), LiaMbPcSd (1) wherein M is B, Zn, Si, Cu, Ga, or Ge, and a to d are the compositional ratio of each element, and satisfy a:b:c:d=1 to 12:0 to 0.2:1:2 to 9.
Abstract:
The method for producing the porous sheet of the present invention includes the steps of (I) preparing a plurality of sheet materials that contain polytetrafluoroethylene and carbon particles and (II) stacking the plurality of sheet materials over one another and rolling the stacked sheet materials. In the method for producing the porous sheet of the present invention, step (I) and step (II) may be repeated alternately. Further, as the sheet materials to be used in the production method of the present invention, a base sheet obtained by forming a mixture containing polytetrafluoroethylene and carbon particles into sheet form also can be used, or a laminated sheet obtained by stacking a plurality of base sheets over one another and rolling them also can be used, for example.
Abstract:
A disclosed method includes: converting, for each sample point, a set of performance item values for a sample point into coordinate values of a mesh element containing the set among plural mesh elements obtained by dividing a space mapped by the performance items; generating a binary decision graph representing a group of the coordinate values of the sample points; calculating the number of sample points including second sample points that dominates a first sample point and the first sample point, by counting the number of paths in the binary decision graph from a root node to a leaf node representing “1” through at least one of certain nodes corresponding to coordinate values that are equal to or less than coordinate values of the first sample point; and calculating a yield of the first sample point by dividing the calculated number by the number of the plural sample points.
Abstract:
The present invention provides an optical semiconductor sealing material comprising a radically polymerized polymer of a methacrylate ester having an alicyclic hydrocarbon group containing 7 or more carbon atoms, e.g. an adamantyl group, a norbornyl group, or a dicyclopentanyl group; and an optical semiconductor sealing material comprising a radically polymerized polymer of 50 to 97 mass % of the methacrylate ester and 3 to 50 mass % of acrylate ester having a hydroxyl group. The optical semiconductor sealing material of the present invention is highly transparent and stable to UV light and thus does not undergo yellowing. In addition, the material exhibits excellent compatibility between heat resistance and refractive index, does not undergo deformation or cracking during heating processes such as reflow soldering, and shows high processability. The material can be preferably used as a sealing material for light-emitting elements and light-receiving elements of optical semiconductor devices (semiconductor light-emitting devices).