Abstract:
The present invention provides a method for producing a PTFE fiber that makes it possible, unlike the emulsion spinning process, to obtain a polytetrafluoroethylene (PTFE) fiber, particularly a long PTFE fiber, without using a matrix material, is more productive than conventional production methods such as a slit yarn process, and is capable of enhancing mechanical properties and the degree of freedom in diameter of the obtained fiber. The method for producing the PTFE fiber of the present invention includes the step of reducing a diameter of a string-shape PTFE-containing solid material (a first solid material) by drawing the first solid material at a temperature equal to or higher than a melting point of PTFE. The first solid material can be obtained from a PTFE-containing solid material (a second solid material) containing water and a surfactant, by reducing an amount of the water contained in the second solid material.
Abstract:
The method for producing the porous sheet of the present invention includes the steps of (I) preparing a plurality of sheet materials that contain polytetrafluoroethylene and carbon particles and (II) stacking the plurality of sheet materials over one another and rolling the stacked sheet materials. In the method for producing the porous sheet of the present invention, step (I) and step (II) may be repeated alternately. Further, as the sheet materials to be used in the production method of the present invention, a base sheet obtained by forming a mixture containing polytetrafluoroethylene and carbon particles into sheet form also can be used, or a laminated sheet obtained by stacking a plurality of base sheets over one another and rolling them also can be used, for example.
Abstract:
An electromagnetic wave absorber includes a dielectric layer, a divided conductive film layer and an electromagnetic wave reflective layer, wherein a ratio of thickness ‘d’ and wavelength ‘λ’ satisfies a condition of [0.01≦d/λ0.03], weight per unit area of the electromagnetic wave absorber falls within a range of 1000 g/m2 and 3000 g/m2. The divided conductive film layer is configured such that each side's length of conductive films is dimensioned within a range of 0.5 mm and 4.8 mm and arrangement distance between adjoining conductive films is taken within a range of 0.01 mm and 3 mm.
Abstract translation:电磁波吸收体包括电介质层,分隔导电膜层和电磁波反射层,其中厚度'd'和波长'λ'的比率满足[0.01 / d /λ0.03]的条件, 电磁波吸收体的单位面积在1000g / m 2和3000g / m 2的范围内。 分隔导电膜层被构造成使得每侧的导电膜的长度的尺寸在0.5mm和4.8mm的范围内,并且相邻的导电膜之间的布置距离在0.01mm和3mm的范围内。
Abstract:
Disclosed is a process for production of a polytetrafluoroethylene (PTFE) sheet, which is superior in productivity compared to conventional processes and can reduce the cost of production. Also disclosed is a process for production of a PTFE seal tape. The processes comprise the following steps (i) to (iii): (i) applying a force to a PTFE particle suspension comprising PTFE particles, a surfactant and water (a dispersion medium) so that the particles can come close to each other or contact with each other, thereby forming a PTFE-containing solid material having the water and the surfactant included therein; (ii) shaping the solid material into a sheet-like form; and (iii) reducing the water content in the sheet-like solid material.
Abstract:
There is disclosed a fuel cell in which an insulating material is disposed, whereby the thermal diffusion of the inside and outside of a fuel cell can be suppressed to suppress the deterioration of the performance of the fuel cell due to a temperature drop. Moreover, the physical properties of the insulating material are specified, whereby appropriate insulating properties required in the fuel cell can be obtained, and startup properties are improved. A fuel cell has a cell stack in which a plurality of unit cells are stacked, and terminal plates disposed on both sides of the cell stack in a cell stack direction thereof. The fuel cell comprises an insulating portion having an insulating material and holding plates which hold the insulating material from both the sides of the insulating material in the cell stack direction, the insulating material is held between the holding plates, and the insulating material has a thermal conductivity of 0.1 W/mK or less and a porosity of 70% or more.
Abstract:
Disclosed is a process for production of a polytetrafluoroethylene (PTFE) sheet, which is superior in productivity compared to conventional processes and can reduce the cost of production. Also disclosed is a process for production of a PTFE seal tape. The processes comprise the following steps (i) to (iii): (i) applying a force to a PTFE particle suspension comprising PTFE particles, a surfactant and water (a dispersion medium) so that the particles can come close to each other or contact with each other, thereby forming a PTFE-containing solid material having the water and the surfactant included therein; (ii) shaping the solid material into a sheet-like form; and (iii) reducing the water content in the sheet-like solid material.
Abstract:
There is disclosed a fuel cell in which an insulating material is disposed, whereby the thermal diffusion of the inside and outside of a fuel cell can be suppressed to suppress the deterioration of the performance of the fuel cell due to a temperature drop. Moreover, the physical properties of the insulating material are specified, whereby appropriate insulating properties required in the fuel cell can be obtained, and startup properties are improved. A fuel cell has a cell stack in which a plurality of unit cells are stacked, and terminal plates disposed on both sides of the cell stack in a cell stack direction thereof. The fuel cell comprises an insulating portion having an insulating material and holding plates which hold the insulating material from both the sides of the insulating material in the cell stack direction, the insulating material is held between the holding plates, and the insulating material has a thermal conductivity of 0.1 W/mK or less and a porosity of 70% or more.
Abstract:
The dielectric sheet of the present invention is made of a sheet having a thickness of 5-30 μm, which is formed by drying a coated film of a coating liquid containing a resin and a natural graphite powder having an average particle diameter of 10 μm or less. Preferably, the sheet is formed from a coating liquid containing a resin, a natural graphite powder having an average particle diameter of 10 μm or less, and a solvent, wherein the content rate of the natural graphite powder to the resin exceeds 5% by volume and is not more than 20% by volume, and the total content of the resin and the natural graphite powder is 10-55 wt %.
Abstract:
Provided is a method for producing a thermally-conductive adhesive sheet including a thermally-conductive adhesive agent layer by performing: a composition preparation step of preparing a thermally-conductive adhesive agent composition including a thermally-conductive particle and an acrylic polymer component; and an adhesive agent layer formation step of forming a sheet-shaped thermally-conductive adhesive agent layer with the thermally-conductive adhesive agent composition, wherein in the composition preparation step, a cyclic organic compound of 8 or less carbon atoms, or an organic compound of 3 or less carbon atoms having a hydroxy, ketone, aldehyde, carboxyl or nitrile group is mixed as a constitutional component of the thermally-conductive adhesive agent composition.
Abstract:
The present invention provides a method of manufacturing a polytetrafluoroethylene (PTFE) product offering better productivity and a higher degree of flexibility in form of the product to be obtained than the conventional methods of manufacturing a PTFE product, and a method of manufacturing PTFE particle aggregate obtained as an intermediate while manufacturing a PTFE product. According to the manufacturing methods, aggregate of PTFE particles including water and a surfactant is obtained by applying force to a dispersion of PTFE particles containing PTFE particles, a surfactant and water as a dispersion medium, where the force makes the PTFE particles approach or contact with each other. Such a manufacturing method may be carried out, for example, with a chamber (1) shown in FIG. 1.