Abstract:
Systems, methods, apparatus, and articles of manufacture to provide for low-latency delivery and playback of audio are disclosed. In one embodiment, an example audio system includes multiple playback devices including a primary device and one or more secondary devices, whereby, the primary device establishes and controls a peer-to-peer network that connects, wirelessly or wired, to each of the satellite devices. An example audio device contains a channel selector, a control interface, and an audio interface. In some embodiments the control interface is used to transmit control information to another device on a first frequency channel, and the audio interface is used to transmit audio information to another device on a second frequency channel.
Abstract:
A node in a wireless communication system announces a channel switch operation to facilitate a smooth transition to other channel. The node detects a requirement to discontinue communications at a first channel and sends a message to a plurality of neighboring nodes in response to detecting the requirement. Generally, the message comprises at least a reason for discontinuation of communications at the first channel and a duration for the channel switch operation after which the node is available for communications at the first channel or an alternate channel. Each of the plurality of neighboring nodes can determine based on the message and the neighborhood conditions a requirement to scan alternate channels to initiate communications with other nodes.
Abstract:
A central registration system provides channel maps of available spectrum to radio devices based on feedback and spectrum allocation policies. Each available channel in the channel map is given a score that is indicative of the quality of the channel for use by the particular radio device for which the channel map was generated. The quality score for each available channel may be based on the radio device's susceptibility to different types of interference and/or radio device's tolerance of the different types of potential interference.
Abstract:
A provisioning engine provisions spectrum into an allocable spectrum object. The provisioning engine includes an interface configured to receive inputs of available spectrum information and a plurality of provisioning parameters. The plurality of provisioning parameters include at least one signal strength limit, and may include at least first and second signal strength limits that may be boundary strength limit and an allocation strength limit. A controller is configured to execute a spectrum provisioning application that is stored in a memory and, by execution of the spectrum provisioning application, the provisioning engine is configured to generate an allocable spectrum object in accordance with the provisioning parameters. Spectrum encompassed within the spectrum object is allocable by an allocation engine to spectrum users in accordance with the provisioning parameters. An allocation engine in turn allocates spectrum encompassed within the provisioned spectrum object in accordance with the provisioning parameters.
Abstract:
A central registration system provides channel maps of available spectrum to radio devices based on feedback and spectrum allocation policies. Each available channel in the channel map is given a score that is indicative of the quality of the channel for use by the particular radio device for which the channel map was generated. The quality score for each available channel may be based on the radio device's susceptibility to different types of interference and/or radio device's tolerance of the different types of potential interference.
Abstract:
Network access for a secure network is transparently provided to a wireless device using a social networking type of framework. An operator of a secure wireless network may register the network and access credentials for the network with a network access management system. The operator also may configure network access settings, such as designating a sharing level, that permits wireless devices meeting access criteria for the sharing level to use the network. Electronic devices belonging to social media contacts, such as family members and friends, may be associated with the registered network. When the associated devices or other qualifying devices are within communication range of the network, a client function in the device may coordinate with the network access management system to provide network access to the devices. The coordination may take place through a network different than the secure network, such as a cellular network to which the electronic device has subscription access. The network access may be established in a manner that is transparent to the user of the electronic device.
Abstract:
Systems and methods for identifying and using a connectivity option that has lower power consumption in the electronic device than another, typically default, connectivity option. The mobile device may scan for connectivity options and communicate those options to a network access management system. The management system may, in turn, identify which option may reduce power consumption by the electronic device and communicate that option to the mobile device. It is contemplated that the mobile device may not have credentials for using the option that reduces power consumption by the electronic device. Therefore, access credentials may be supplied by the management system to enable the electronic device to use the option.
Abstract:
A method provides for differentiating usage permissions between different categories of communication traffic within a given network. The method includes ensuring one or more categories of traffic never transits communication radios, link, and/or spectrums dedicated to a different category of traffic. A combined routing metric is calculated using a scaling factor for discouraging usage of restricted communication links and encouraging usage of non-restricted communication links.
Abstract:
A multi-hop wireless network includes an originator node, a proxy node, and at least one other node. The originator node generates a data packet and transmits the data packet to the proxy node. The proxy node receives and forwards to the at least one other node the data packet including an originator node address and a proxy node sequence number for an end-to-end groupcast sequence number.
Abstract:
A message format for use in one or more multihop flow reservation messages in a multihop wireless network includes a reservation originator identification; a reservation terminator identification; a sequence control; and optionally a flow originator identification. A multihop flow reservation comprises forwarding a traffic stream request including the message format and forwarding a traffic stream reply including the message format along a multihop route. After the traffic stream reservation is completed, a data is forwarded along the multihop route.