Abstract:
A double-ended inverter system for a vehicle having a load, a first energy source, and a first inverter system coupled to the first energy source and adapted to drive the load. The double-ended inverter system further having a secondary energy source, a second capacitor coupled in parallel to the secondary energy source, and a second inverter system coupled to the secondary energy source and adapted to drive the load. A controller includes an output coupled to the first inverter system and the second inverter system for providing at least one pulse width modulated signal to the first inverter system and the second inverter system.
Abstract:
A power supply generates alternating current and direct current from a constant-voltage source. A multi-phase pulse width modulation voltage source inverter is connected across the source to output multi-phase alternating current. At least one waveform generator is bridged in parallel with the inverter, with each waveform generator outputting zero-sequence waveform current compensated to maintain the multi-phase current within a predetermined tolerance from a desired set point. A rectifier receives the waveform current and generates direct current.
Abstract:
A method of controlling an IPM machine having a salient rotor. Stator terminal signals are measured and rotated to obtain synchronous reference frame current signals. A rotor position is estimated based on an impedance generated using the rotor and included in the current signals. The estimated rotor position is used to control the machine. An alternator-starter system in which this method is used can provide high cranking torque and generation power over a wide speed range while providing operational efficiency.
Abstract:
A hybrid/electric vehicle including a battery system connected to a DC charger, an inverter coupled to the battery system, and an electric AC motor coupled to the inverter. The motor has first, second and third stator windings corresponding to first, second and third phases of the motor. Each stator winding has first and second leads, and the inverter has a plurality of switches that are connected to provide current to the stator windings at the first and second leads.
Abstract:
A power electronics cooling housing for use in a power electronics system. The power electronics cooling housing has a body with a coolant cavity formed in one surface and a capacitor bus assembly potting cavity formed in an opposite surface. A bus bar passthrough opening is formed through the body. The bus bar passthrough opening provides an opening from the coolant cavity and the capacitor bus assembly potting cavity. A coolant inlet manifold having a coolant cavity inlet and a coolant outlet manifold having a coolant cavity outlet are formed in the body that are coupled to respective ends of the coolant cavity. An environmental sealing gasket surrounds the coolant cavity.
Abstract:
A method and system for operating an automotive electric motor having first and second components is provided. A desired frequency of vibration for the electric motor is selected. A current is caused to flow through at least one of the first and second components such that the second component moves relative to the first component. The current is modulated such that the motor vibrates at the desired frequency.
Abstract:
Systems and methods are provided for a double-ended inverter drive system for a fuel cell vehicle. An electric drive system for a vehicle comprises an electric motor configured to provide traction power to the vehicle. A first inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. A fuel cell is coupled to the first inverter to provide power flow from the fuel cell to the electric motor. A second inverter is coupled to the electric motor, and is configured to provide alternating current to the electric motor. An energy source is coupled to the second inverter to provide power flow between the energy source and the electric motor. A controller is coupled to the first inverter and the second inverter, and is configured to provide a constant power from the fuel cell during operation of the electric motor.
Abstract:
A double ended inverter system for an AC traction motor of a vehicle includes a fuel cell configured to provide a DC voltage, an impedance source inverter subsystem coupled to the fuel cell, a DC voltage source, and an inverter subsystem coupled to the DC voltage source. The impedance source inverter subsystem, which includes an ultracapacitor, is configured to drive the AC traction motor. The inverter subsystem is configured to drive the AC electric traction motor. The ultracapacitor is implemented in a crossed LC network coupled to the fuel cell.
Abstract:
Systems and apparatus are provided for an inverter system for use in a vehicle. The inverter system comprises a six-phase motor having a first set of three-phase windings and a second set of three-phase windings and a three-phase motor having a third set of three-phase windings, wherein the third set of three-phase windings is coupled to the first set of three-phase windings and the second set of three-phase windings. The system further comprises a first energy source coupled to a first inverter adapted to drive the six-phase motor and the three-phase motor, wherein the first set of three-phase windings is coupled to the first inverter, and a second energy source coupled to a second inverter adapted to drive the six-phase motor and the three-phase motor, wherein the second set of three-phase windings is coupled to the second inverter. A controller is coupled to the first inverter and the second inverter.
Abstract:
Systems and apparatus are provided for an inverter system for use in a vehicle having a first energy source and a second energy source. The inverter system comprises an electric motor having a first set of windings and a second set of windings. The inverter system further comprises a first inverter coupled to the first energy source and adapted to drive the electric motor, wherein the first set of windings are coupled to the first inverter. The inverter system also comprises a second inverter coupled to the second energy source and adapted to drive the electric motor, wherein the second set of windings are coupled to the second inverter. A controller is coupled to the first inverter and the second inverter to achieve desired power flow between the first energy source, the second energy source, and the electric motor.