Abstract:
A new B-cell receptor, Bp50, a 50 kilodalton polypeptide, that functions in B-cell proliferation is described. Ligands such as lymphokines, antibody molecules or the Fv fragments of antibody molecules that bind to Bp50 and augment the proliferation of activated B-cells can be used to regulate B-cell proliferation or differentiation.
Abstract:
The invention identifies the CTLA4 receptor as a ligand for the B7 antigen. The complete amino acid sequence encoding human CTLA4 receptor gene is provided. Methods are provided for expressing CTLA4 as an immunoglobulin fusion protein, for preparing hybrid CTLA4 fusion proteins, and for using the soluble fusion proteins, fragments and derivatives thereof, including monoclonal antibodies reactive with B7 and CTLA4, to regulate T cell interactions and immune responses mediated by such interactions.
Abstract:
Antibodies that bind a protein gp39 (also referred to as CD40 ligand) are disclosed. Preferably, the antibodies are monoclonal antibodies of an IgG1 isotype and bind human gp39. In a preferred embodiment, an antibody of the invention binds an epitope recognized by a monoclonal antibody 24-31, produced by a hybridoma 24-31 (ATTC Accession No. HB11712) or binds an epitope recognized by a monoclonal antibody 89-76, produced by a hybridoma 89-76 (ATCC Accession No.HB11713). Pharmaceutical compositions comprising the antibodies of the invention are also disclosed. The antibodies of the invention are useful for inhibiting B cell proliferation and differentiation, T cell responses and for inducing T cell tolerance. Nucleic acid molecules encoding anti-gp39 antibodies, or portions thereof, as well as expression vectors and host cells incorporating said nucleic acid molecules, are also encompassed by the invention.
Abstract:
The invention relates to novel binding domain immunoglobulin fusion proteins that feature a binding domain for a cognate structure such as an antigen, a counterreceptor or the like, a hinge region polypeptide having either zero or one cysteine residue, and immunoglobulin CH2 and CH3 domains, and that are capable of ADCC and/or CDC while occurring predominantly as monomeric polypeptides. The fusion proteins can be recombinantly produced at high expression levels. Also provided are related compositions and methods, including immunotherapeutic applications.
Abstract:
Hybrid nuclease molecules and methods for treating an immune-related disease or disorder in a mammal, and a pharmaceutical composition for treating an immune-related disease in a mammal.
Abstract:
The invention relates to novel binding domain-immunoglobulin fusion proteins that feature a binding domain for a cognate structure such as an antigen, a counterreceptor or the like, a wild-type IgG1, IGA or IgE hinge region polypeptide or a mutant IgG1 hinge region polypeptide having either zero, one or two cysteine residues, and immunoglobulin CH2 and CH3 domains, and that are capable of ADCC and/or CDC while occurring predominantly as polypeptides that are compromised in their ability to form disulfide-linked multimers. The fusion proteins can be recombinantly produced at high express levels. Also provided are related compositions and methods, including cell surface forms of the fusion proteins and immunotherapeutic applications of the fusion proteins and of polynucleotides encoding such fusion proteins.
Abstract:
The invention relates to novel binding domain-immunoglobulin fusion proteins that feature a binding domain for a cognate structure such as an antigen, a counterreceptor or the like, a wild-type IgG1, IGA or IgE hinge region polypeptide or a mutant IgG1 hinge region polypeptide having either zero, one or two cysteine residues, and immunoglobulin CH2 and CH3 domains, and that are capable of ADCC and/or CDC while occurring predominantly as polypeptides that are compromised in their ability to form disulfide-linked multimers. The fusion proteins can be recombinantly produced at high express levels. Also provided are related compositions and methods, including cell surface forms of the fusion proteins and immunotherapeutic applications of the fusion proteins and of polynucleotides encoding such fusion proteins.
Abstract:
The invention identifies the CTLA4 receptor as a ligand for the B7 antigen. The complete amino acid sequence encoding human CTLA4 receptor gene is provided. Methods are provided for expressing CTLA4 as an immunoglobulin fusion protein, for preparing hybrid CTLA4 fusion proteins, and for using the soluble fusion proteins, fragments and derivatives thereof, including monoclonal antibodies reactive with B7 and CTLA4, to regulate T cell interactions and immune responses mediated by such interactions.
Abstract:
The present invention provides a method for inhibiting an immune response and a method for inhibiting rejection of transplanted tissues. This method comprises preventing an endogenous molecule on a cell selected from the group consisting of gp39 and CD40 antigens from binding its endogenous ligand and preventing an endogenous molecule on a cell selected from the group consisting of CTLA4, CD28, and B7 antigens from binding its endogenous ligand. The prevention of such molecules from binding their ligand thereby blocks two independent signal pathways and inhibits the immune response resulting in transplanted tissue rejection.
Abstract:
Multivalent binding peptides, including bi-specific binding peptides, having immunoglobulin effector function are provided, along with encoding nucleic acids, vectors and host cells as well as methods for making such peptides and methods for using such peptides to treat or prevent a variety of diseases, disorders or conditions, as well as to ameliorate at least one symptom associated with such a disease, disorder or condition.