Abstract:
A main digital-to-analog converter (DAC) receives at least one input and generates an adjusted input. A SAR unit generates a code for controlling the main DAC based on a comparison output of a comparing unit that receives the adjusted input. A reference generator, under control of the generated code, generates at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.
Abstract:
A SAR ADC, used for converting an analog input into an N-bit digital output in a conversion phase, includes: three comparators, each two capacitor sub-arrays, coupled to the three comparators respectively, wherein the two capacitor sub-arrays are used for sampling the analog input and providing two inputs for the corresponding comparator; and an SAR logic, coupled to the three comparators and the three capacitor arrays, for, in each conversion sub-phase, coupling two selected capacitors of each capacitor sub-array to a set of determined reference levels, coupling two capacitors, which were selected in a preceding conversion sub-phase, of each capacitor sub-array to a set of adjusted reference levels obtained based on a set of data outputted from the three comparators in a preceding conversion sub-phase, and then generating two bits of the N-bit digital output by encoding a set of data outputted from the three comparators.
Abstract:
A capacitance mismatch calibrating method for a successive approximation register ADC which includes at least one array of capacitors is provided. The method includes the following steps: firstly, at least two compensating capacitors are configured. A capacitor from the array of capacitors is selected as a capacitor-under-test. Then, the terminal voltages on the terminals of the array of capacitors and on the terminals of the compensating capacitors are determined. A first comparison voltage is outputted based on the determined terminal voltages. Afterwards, a sequence of comparisons is controlled based on the first comparison voltage and a second comparison voltage to output a sequence of corresponding digital bits. Finally, a calibration value is calculated to calibrate the value of a capacitor-under-test according to the digital bits.
Abstract:
A positioning insert for two adjacent vertebral bodies includes a plate like insert adapted to fix relative positions of the two adjacent vertebral bodies and provided with a sharp edge oppositely formed relative to the dull side and first holes defined through a side face of the plate like insert, wherein the sharp edge is formed to have an angle between 5 to 15 degrees; and an annular insert adapted to be inserted into a space between the two adjacent vertebral bodies and having second holes and a slot defined in a peripheral side face thereof to accommodate the plate like insert so as to have the plate like insert received in the slot.
Abstract:
A successive approximation register (SAR) analog-to-digital converter (ADC) is disclosed. A first and second capacitor DACs receive a first and second input signals respectively. A first coarse comparator compares an output of the first capacitor DAC with a window reference voltage, a second coarse comparator compares an output of the second capacitor DAC with the window reference voltage, and a fine comparator compares the output of the first capacitor DAC with the output of the second capacitor DAC. A SAR controller receives outputs of the first and second coarse comparators to determine whether the outputs of the first and second capacitor DACs are within a predictive window determined by the window reference voltage. The SAR controller bypasses at least one phase of analog-to-digital conversion of the SAR ADC when the outputs of the first capacitor DAC and the second capacitor DAC are determined to be within the predictive window. The SAR controller decodes the outputs of the first and second coarse comparators and the fine comparator to obtain a converted output of the SAR ADC.
Abstract:
A pseudo-differential switched-capacitor circuit using integrator-based common-mode stabilization technique is disclosed. A pseudo-differential switched-capacitor circuit with the differential floating sampling (DFS) technique has a common-mode gain value of one (1). An integrator is electrically coupled to the differential positive/negative outputs of the DFS circuit, and the integrator feeds back integrator output to the DFS circuit by detecting common-mode voltage disturbance at the differential positive output (Vout+) and negative output (Vout−), thereby stabilizing output common-mode level of the differential positive output (Vout+) and negative output (Vout−) at a desirable level.
Abstract:
The present invention provides compounds, compositions, and methods for the treatment of disorders and conditions mediated by PPARα. The invention relates to the surprising discovery that oleoylethanolamide (OEA) is an endogenous high affinity and selective ligand of PPARα. The compounds of the invention include, but are not limited to, specific PPARα agonists sharing the receptor binding properties of OEA and fatty acid alkanolamides and their homologs which also are PPARα agonists. Such OEA-like compounds include, but are not limited to, compounds of the following formula: in which n is from 0 to 5, the sum of a and b can be from 0 to 4; Z is a member selected from the group consisting of —C(O)N(Ro)—; —(Ro)NC(O)—; —OC(O)—; —(O)CO—; O; NRo; and S; and wherein Ro and R2 are members independently selected from the group consisting of unsubstituted or unsubstituted alkyl, hydrogen, C1-C6 alkyl, and lower (C1-C6) acyl, and wherein up to eight hydrogen atoms are optionally substituted by methyl or a double bond, and the bond between carbons c and d may be unsaturated or saturated, or a pharmaceutically acceptable salt thereof.
Abstract:
A built-in programmable self-diagnostic circuit for finding and locating faults in a static random access memory (SRAM) unit. The circuit includes a plurality of multiplexers, a demultiplexer, a test pattern generator, a fault location indicator and a controller. The circuit uses either internal test instructions or pre-programmed test instructions to test the SRAM unit so that the exact location of any fault in the SRAM unit can be found and subsequently repaired.
Abstract:
A tool structure including two grips and a tool head. By way of an opening of a first pivot section of the grip, the first pivot sections of the grips can be separated, permitting the grips to be folded to two sides of the tool head. This reduces the room occupied by the tool and facilitates storage and carriage of the tool. The first pivot sections of the grips are spaced from the second pivot sections of the tool head by a certain distance to form a double-lever structure and prolong the length of the force application arm so as to save strength.