摘要:
Disclosed are a method of manufacturing a field-effect transistor. The disclosed method includes: providing a semiconductor substrate; forming a source ohmic metal layer on one side of the semiconductor substrate; forming a drain ohmic metal layer on another side of the semiconductor substrate; forming a gate electrode between the source ohmic metal layer and the drain ohmic metal layer, on an upper portion of the semiconductor substrate; forming an insulating film on the semiconductor substrate's upper portion including the source ohmic metal layer, the drain ohmic metal layer and the gate electrode; and forming a plurality of field electrodes on an upper portion of the insulating film, wherein the insulating film below the respective field electrodes has different thicknesses.
摘要:
Provided are vertical capacitors and methods of forming the same. The formation of the vertical capacitor may include forming input and output electrodes on a top surface of a substrate, etching a bottom surface of the substrate to form via electrodes, and then, forming a dielectric layer between the via electrodes. As a result, a vertical capacitor with high capacitance can be provided in a small region of the substrate.
摘要:
Provided is a power amplifier including: a depletion mode high electron mobility transistor (D-mode HEMT) configured to amplify a signal inputted to a gate terminal and output the amplified signal through a drain terminal; an input matching circuit configured to serially ground the gate terminal; and a DC bias circuit connected between the drain terminal and a ground. Through the foregoing configuration, the HEMT may be biased only by a single DC bias circuit without any biasing means to provide a negative voltage. Also, superior matching characteristic may be provided in various operation frequency bands through a shunt inductor and a choke inductor.
摘要:
A communication terminal including a housing having elastic key buttons integrally coupled thereto is provided. The housing is configured to define an external appearance of the communication terminal. Each of the key buttons may have one end thereof integrally coupled to the housing and a free end at an opposite end thereof. A plurality of key-input switches may be respectively positioned beneath each key button. Each of the key-input switches may detect a corresponding key-input when the free end of the key button is brought into contact with the key-input switch.
摘要:
Provided is a high-isolation switching device for a millimeter-wave band control circuit. By optimizing a cell structure to improve the isolation of an off-state without deteriorating the insertion loss of an on-state, it is possible to implement a high-isolation switching device useful in the design and manufacture of a millimeter-wave band control circuit such as a phase shifter or digital attenuator using switching characteristics. In addition, when a switch microwave monolithic integrated circuit (MMIC) is designed to use the switching device, it is not necessary to use a multi-stage shunt field effect transistor (FET) to improve isolation, nor to dispose an additional λ/4 transformer transmission line, inductor or capacitor near the switching device. Thus, chip size can be reduced, degree of integration can be enhanced, and manufacturing yield can be increased. Consequently, it is possible to reduce manufacturing cost.
摘要:
Provided is a high-isolation switching device for a millimeter-wave band control circuit. By optimizing a cell structure to improve the isolation of an off-state without deteriorating the insertion loss of an on-state, it is possible to implement a high-isolation switching device useful in the design and manufacture of a millimeter-wave band control circuit such as a phase shifter or digital attenuator using switching characteristics. In addition, when a switch microwave monolithic integrated circuit (MMIC) is designed to use the switching device, it is not necessary to use a multi-stage shunt field effect transistor (FET) to improve isolation, nor to dispose an additional λ/4 transformer transmission line, inductor or capacitor near the switching device. Thus, chip size can be reduced, degree of integration can be enhanced, and manufacturing yield can be increased. Consequently, it is possible to reduce manufacturing cost.
摘要:
A method of forming a fine T- or gamma-shaped gate electrode is provided, which is performed by a lithography process using a multi-layered photoresist layer having various sensitivities, deposition of an insulating layer, and an etching process. The method includes: a first step of depositing a first insulating layer on a semiconductor substrate; a second step of coating at least two photoresist layers with different sensitivities from each other on the first insulating layer, and patterning the photoresist layers to have openings which are different in size; a third step of etching the first insulating layer using the photoresist layers as etch masks to form a step hole in which a part contacting the substrate is narrower than an upper part thereof, and removing the photoresist layers; a fourth step of forming a photoresist layer on the first insulating layer, and forming an opening in the photoresist layer to have a T- or gamma-shaped gate head pattern; a fifth step of performing a gate recess process with respect to the gate pattern; and a sixth step of depositing a gate metal on the gate pattern, and removing the photoresist layers.
摘要:
A submount for an opto-electronic module for outputting light incident from an opto-electronic device as an electrical signal is provided. The submount includes a dielectric material and an interconnection line. The dielectric material has a polygonal shape including a front face and a bottom face. The interconnection line is attached to the front face and the bottom face of the dielectric material. The interconnection line has a coplanar waveguide structure and is electrically to the opto-electronic device to output signals from the opto-electronic device.
摘要:
Provided are vertical capacitors and methods of forming the same. The formation of the vertical capacitor may include forming input and output electrodes on a top surface of a substrate, etching a bottom surface of the substrate to form via electrodes, and then, forming a dielectric layer between the via electrodes. As a result, a vertical capacitor with high capacitance can be provided in a small region of the substrate.
摘要:
Disclosed are a power semiconductor device and a method of fabricating the same which can increase a breakdown voltage of the device through a field plate formed between a gate electrode and a drain electrode and achieve an easier manufacturing process at the same time. The power semiconductor device according to an exemplary embodiment of the present disclosure includes a source electrode and a drain electrode formed on a substrate; a dielectric layer formed between the source electrode and the drain electrode to have a lower height than heights of the two electrodes and including an etched part exposing the substrate; a gate electrode formed on the etched part; a field plate formed on the dielectric layer between the gate electrode and the drain electrode; and a metal configured to connect the field plate and the source electrode.