Abstract:
In a method of forming a conductive pattern in a semiconductor device, a conductive layer including a metal is formed on a substrate. A mask including carbon is provided on the conductive layer, and the conductive pattern is formed on the substrate by etching the conductive layer using the mask as an etching mask. The mask is removed from the conductive pattern by an oxygen plasma ashing process. An oxidized portion of the conductive pattern is reduced. The conductive pattern may have a desired resistance by reducing the oxidized portion to improve electrical characteristics and reliability of the semiconductor device.
Abstract:
An exemplary semiconductor device includes a semiconductor substrate on which lower electrodes are formed. The lower electrodes are arranged in an array including a rows extending substantially parallel to one another along a first direction. A stripe-shaped capacitor support pad is interposed between a pair of adjacent ones of the rows and is connected to lower electrodes in the pair of adjacent ones of the rows. The semiconductor device may include plurality of capacitors each including a one of the lower electrodes, a dielectric film, and an upper electrode. An upper end of the capacitor support pad is below the upper ends of the lower electrodes. A portion of the stripe-shaped capacitor support pad is interposed between adjacent ones of lower electrodes included within at least one of the rows and is connected to the adjacent ones of lower electrodes included within the at least one of the rows.
Abstract:
An adaptive writing method of a high-density optical recording apparatus and a circuit thereof. The circuit includes a discriminator for discriminating a magnitude of a present mark of input NRZI data and magnitudes of leading and/or trailing spaces of the input NRZI data, a generator for controlling the waveform of a write pulse in accordance with the magnitude of the present mark of the input NRZI data and the magnitudes of the leading and/or trailing spaces of the input NRZI data to generate an adaptive write pulse, and a driver for driving a light source by converting the adaptive write pulse into a current signal in accordance with driving power levels for respective channels of the adaptive write pulse. The widths of the first and/or last pulses of the write pulse waveform are varied in accordance with the magnitude of the present mark of input NRZI data and the magnitude of the leading and/or trailing spaces, thereby minimizing jitter to enhance system reliability and performance.
Abstract:
Disclosed is an AC light emitting device having photonic crystal structures and a method of fabricating the same. The light emitting device includes a plurality of light emitting cells and metallic wirings electrically connecting the light emitting cells with one another. Further, each of the light emitting cells includes a first conductive type semiconductor layer, a second conductive type semiconductor layer disposed on one region of the first conductive type semiconductor layer, and an active layer interposed between the first and second conductive type semiconductor layers. In addition, a photonic crystal structure is formed in the second conductive type semiconductor layer. The photonic crystal structure prevents light emitted from the active layer from laterally propagating by means of a periodic array, such that light extraction efficiency of the light emitting device can be improved. Furthermore, the metallic wirings electrically connect a plurality of light emitting cells with one another such that an AC light emitting device can be provided.
Abstract:
In a light emitting diode, a first semiconductor layer supplies electrons, and a second semiconductor layer supplies holes. An active layer is formed between the first and second semiconductor layers. The active layer receives electrons and holes, and emits light in response to coupling between the electrons and the holes. A first reflective layer is formed on a bottom portion of the first semiconductor layer, and a second reflective layer is formed on a top portion of the second semiconductor layer. The light emitted from the active layer exits toward a side of the active layer.
Abstract:
An adaptive writing method of a high-density optical recording apparatus and a circuit thereof. The circuit includes a discriminator for discriminating a magnitude of a present mark of input NRZI data and magnitudes of leading and/or trailing spaces of the input NRZI data, a generator for controlling the waveform of a write pulse in accordance with the magnitude of the present mark of the input NRZI data and the magnitudes of the leading and/or trailing spaces of the input NRZI data to generate an adaptive write pulse, and a driver for driving a light source by converting the adaptive write pulse into a current signal in accordance with driving power levels for respective channels of the adaptive write pulse. The widths of the first and/or last pulses of the write pulse waveform are varied in accordance with the magnitude of the present mark of input NRZI data and the magnitude of the leading and/or trailing spaces, thereby minimizing jitter to enhance system reliability and performance.
Abstract:
A light emitting device having a monolithic protection element and a method of fabricating the light emitting device are provided. The light emitting device includes: a light emitter having a cathode and an anode; and the resistive protection element connected to the light emitter in parallel through the cathode and the anode. Here, a resistance Rs of the resistive protection element has a value between a forward resistance Rf and a reverse resistance Rr of a current of the light emitter.
Abstract:
An adaptive writing method of a high-density optical recording apparatus and a circuit thereof. The circuit includes a discriminator for discriminating a magnitude of a present mark of input NRZI data and magnitudes of leading and/or trailing spaces of the input NRZI data, a generator for controlling the waveform of a write pulse in accordance with the magnitude of the present mark of the input NRZI data and the magnitudes of the leading and/or trailing spaces of the input NRZI data to generate an adaptive write pulse, and a driver for driving a light source by converting the adaptive write pulse into a current signal in accordance with driving power levels for respective channels of the adaptive write pulse. The widths of the first and/or last pulses of the write pulse waveform are varied in accordance with the magnitude of the present mark of input NRZI data and the magnitude of the leading and/or trailing spaces, thereby minimizing jitter to enhance system reliability and performance.