Abstract:
Provided are a dye-sensitized solar cell and a method of fabricating the same. The dye-sensitized solar cell includes a lower substrate, an upper substrate, a dielectric, a semiconductor electrode layer, a dye layer, and an electrolyte. The upper substrate is spaced from the lower substrate and has a light emitting surface facing a surface of the lower substrate and a light incident surface opposite to the light emitting surface. The dielectric is disposed on the surface of the lower substrate. The semiconductor electrode layer includes electrode dots disposed on the dielectric. The dye layer is disposed on surfaces of the electrode dots. The electrolyte is disposed between the lower substrate and the upper substrate.
Abstract:
Provided is a method of designing an electrolyte composition including a nonaqueous organic solvent mixture and a lithium salt to obtain an optimal composition ratio of components of the electrolyte composition for a high charging/high-output discharging secondary battery. The method includes: selecting components of the nonaqueous organic solvent mixture; determining composition ratio ranges of the selected components satisfying such conditions that an average dielectric constant, an average viscosity, and an average boiling point satisfy predetermined boundary values; dividing the ranges of the composition ratios into a plurality of groups; selecting a representative composition ratio of each of the groups; adding a lithium salt to a nonaqueous organic solvent mixture having the representative composition ratio to prepare an electrolyte composition; and measuring properties of the electrolyte composition to determine a composition ratio of an electrolyte composition having predetermined properties.
Abstract:
A solar cell panel and a method for manufacturing the same are discussed. The solar cell panel includes a plurality of solar cells each including a substrate and a plurality of electrode parts positioned on a surface of the substrate, an interconnector electrically connecting the electrode parts of adjacent ones of the plurality of solar cells to one another, and conductive adhesive films including a resin and a plurality of conductive particles dispersed in the resin. The conductive adhesive films is pressed between the electrode parts and the interconnector to electrically connect the electrode parts to the interconnector. A plurality of uneven portions are positioned on at least one of an upper surface and a lower surface of the interconnector.
Abstract:
A solar cell module having an interconnector and a method of fabricating the same are disclosed. The solar cell module includes a plurality of solar cells and an interconnector including a first area electrically connected to one of two adjacent solar cells of the plurality of solar cells, a second area electrically connected to the other of the two adjacent solar cells, and a third area connecting the first area to the second area. At least one of the first area and the second area of the interconnector has at least one uneven surface, and the third area of the interconnector has a substantially planarized surface.
Abstract:
A lithium rechargeable battery includes a cathode plate having a cathode current collector layer; and a cathode layer composed of particles of a cathode active material; an anode plate that is spaced apart from the cathode plate and having an anode current collector layer and an anode layer composed a mixed anode active material that is a mixture including particles of a spinel lithium titanium oxide (Li4Ti5O12) and nanotubes of a lithium titanium oxide (LixTiO2, where 0
Abstract translation:锂可充电电池包括具有阴极集电器层的阴极板; 以及由正极活性物质的粒子构成的阴极层; 阳极板与阴极板间隔开并具有阳极集电器层和阳极层,阳极层由混合阳极活性材料构成,该混合阳极活性材料是包含尖晶石锂钛氧化物(Li 4 Ti 5 O 12)的颗粒和锂二氧化钛的纳米管的混合物 (LixTiO 2,其中0
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The method includes: forming a trench in a semiconductor substrate of a first conductive type; forming a trench dopant containing layer including a dopant of a second conductive type on a sidewall and a bottom surface of the trench; forming a doping region by diffusing the dopant in the trench dopant containing layer into the semiconductor substrate; and removing the trench dopant containing layer.
Abstract:
Provided is a voltage supply circuit using a charge pump. The voltage supply circuit enhances charge pump output voltage fluctuation characteristics depending on load variation of a charge pump voltage generator (load regulation characteristics) when receiving an operation power supply voltage of the charge pump through a regulator. The voltage supply circuit is configured to feed back fluctuation of a charge pump output voltage to a charge pump voltage regulator. The fluctuation of the charge pump output voltage is compensated through fluctuation of an output voltage of the charge pump to active enhance the load regulation characteristics.
Abstract:
Provided is a memory access device including multiple processors accessing a specific memory. The memory access device includes first and second processors, first and second transaction controllers, a memory access switch, and a memory controller. The first and second transaction controllers are connected respectively to the first and second processors. The memory access switch is connected to the first and second transaction controllers. The memory controller is connected to the memory access switch to control a memory device. Herein, if the first and second processors simultaneously access the memory device, the second processor stores an address or data in the second transaction controller while the first processor is accessing the memory device.
Abstract:
Disclosed is a micro electro mechanical system (MEMS) microphone including: a substrate; an acoustic chamber formed by processing the substrate; a lower electrode formed on the acoustic chamber and fixed to the substrate; a diaphragm formed over the lower electrode so as to be spaced apart from the lower electrode by a predetermined interval; and a diaphragm discharge hole formed at a central portion of the diaphragm. According to an exemplary embodiment of the present disclosure, attenuation generated by an air layer between the diaphragm and the lower electrode in a MEMS microphone may be effectively reduced, thereby making it possible to obtain high sensitivity characteristics and reduce a time and a cost required for removing a sacrificial layer between the diaphragm and the lower electrode.
Abstract:
A solar cell panel is discussed. The solar cell panel includes a plurality of solar cells each including a substrate and an electrode part positioned on a surface of the substrate, an interconnector for electrically connecting at least one of the plurality of solar cells to another of the plurality of solar cells, and a conductive adhesive film including a resin and a plurality of conductive particles dispersed in the resin. The conductive adhesive film is positioned between the electrode part of the at least one of the plurality of solar cells and the interconnector to electrically connect the electrode part of the at least one of the plurality of solar cells to the interconnector. A width of the interconnector is equal to or greater than a width of the conductive adhesive film.