Abstract:
A method for forming a structure is provided and includes implanting an atomic species into a donor substrate having an upper surface at a given depth relative to the upper surface to form an embrittlement zone in the donor substrate, the embrittlement zone defining a removable layer within the donor substrate. The method further includes assembling the upper surface of the donor substrate to a receiver substrate. Additionally, the method includes detaching the removable layer from the donor substrate at the embrittlement zone, thereby forming a detachment surface on the removable layer, by high temperature annealing. The high temperature annealing includes a temperature upgrade phase to a predetermined maximum temperature, maintaining the maximum temperature for a predetermined exposure duration, and a temperature downgrade phase. The maximum temperature and the exposure duration are selected so as to prevent the appearance of significant defects at the detachment surface.
Abstract:
The invention provides methods of direct bonding substrates at least one of which includes a layer of semiconductor material that extends over its front face or in the proximity thereof. The provided methods include, prior to bonding, subjecting the bonding face of at least one substrate comprising a semiconductor material to selected heat treatment at a selected temperature and in a selected gaseous atmosphere. The bonded substrates are useful for electronic, optic, or optoelectronic applications.
Abstract:
The present invention relates to a method of manufacturing a wafer comprising a single crystalline bulk substrate of a first material and at least one epitaxial layer of a second material which has a lattice different from the lattice of the first material. The present invention provides a method for manufacturing a wafer in which a layer which is lattice-mismatched with the substrate can be grown on the substrate with a high effectiveness and high quality at a low cost. A roughening step is included for roughening the surface of the bulk substrate and a growing step is included for growing the second material on the rough surface with a reduced number of threading dislocations and an enhanced strain relaxation compared to a second material that is epitaxially grown on a polished surface.
Abstract:
A method for forming a structure is provided and includes implanting an atomic species into a donor substrate having an upper surface at a given depth relative to the upper surface to form an embrittlement zone in the donor substrate, the embrittlement zone defining a removable layer within the donor substrate. The method further includes assembling the upper surface of the donor substrate to a receiver substrate. Additionally, the method includes detaching the removable layer from the donor substrate at the embrittlement zone, thereby forming a detachment surface on the removable layer, by high temperature annealing. The high temperature annealing includes a temperature upgrade phase to a predetermined maximum temperature, maintaining the maximum temperature for a predetermined exposure duration, and a temperature downgrade phase. The maximum temperature and the exposure duration are selected so as to prevent the appearance of significant defects at the detachment surface.
Abstract:
A method of fabricating a hybrid substrate by direct bonding of donor and receiver substrates where each substrate has a respective front face and surface, with the front face of the receiver substrate having a semiconductor material near the surface, and the donor substrate including a zone of weakness that defines a layer to be transferred. The method includes preparing the substrate surfaces by exposing the surface of the receiver substrate to a temperature from about 900° C. to about 1200° C. in an inert atmosphere for at least 30 sec; directly bonding together the front faces of the prepared substrates to form a composite substrate; heat treating the composite substrate to increase bonding strength between the front surfaces of the donor and receiver substrates; and transferring the layer from the donor substrate by detaching the remainder of the donor substrate at the zone of weakness.
Abstract:
A method for self-supported transfer of a fine layer, in which at least one species of ions is implanted in a source-substrate at a specified depth in relation to the surface of the source-substrate. A stiffener is applied in intimate contact with the source-substrate and the source-substrate undergoes a heat treatment at a specified temperature during a specified period of time in order to create an embrittled buried area substantially at the specified depth without causing a thin layer, defined between the surface and the embrittled buried layer in relation to the remainder of the source-substrate, to become thermally detached. A controlled localized energy pulse is applied to the source-substrate in order to cause the self-supported detachment of the thin layer.
Abstract:
The present invention provides methods for the manufacture of a trench structure in a multilayer wafer that comprises a substrate, an oxide layer on the substrate and a semiconductor layer on the oxide layer. These methods include the steps of forming a trench through the semiconductor layer and the oxide layer and extending into the substrate, and of performing an anneal treatment of the formed trench such that at the inner surface of the trench some material of the semiconductor layer flows at least over a portion of the part of the oxide layer exposed at the inner surface of the trench. Substrates manufactured according to this invention are advantageous for fabricating various semiconductor devices, e.g., MOSFETs, trench capacitors, and the like.
Abstract:
A method of fabricating a back-illuminated image sensor that includes the steps of providing a first substrate of a semiconductor layer, in particular a silicon layer, forming electronic device structures over the semiconductor layer and, only then, doping the semiconductor layer. By doing so, improved dopant profiles and electrical properties of photodiodes can be achieved such that the final product, namely an image sensor, has a better quality.
Abstract:
A method for manufacturing a hybrid semiconductor substrate comprises the steps of (a) providing a hybrid semiconductor substrate comprising a semiconductor-on-insulator (SeOI) region, that comprises an insulating layer over a base substrate and a SeOI layer over the insulating layer, and a bulk semiconductor region, wherein the SeOI region and the bulk semiconductor region share the same base substrate; (b) providing a mask layer over the SeOI region; and (c) forming a first impurity level by doping the SeOI region and the bulk semiconductor region simultaneously such that the first impurity level in the SeOI region is contained within the mask. Thereby, a higher number of process steps involved in the manufacturing process of hybrid semiconductor substrates may be avoided.
Abstract:
The invention relates to a method for manufacturing a semiconductor substrate, in particular a semiconductor-on-insulator substrate by providing a donor substrate and a handle substrate, forming a pattern of one or more doped regions typically inside the handle substrate, and then attaching such as by molecular bonding the donor and the handle substrate to obtain a donor-handle compound.