Abstract:
The present invention relates to a cerebrovascular analysis system which enables early diagnosis of various incurable cerebrovascular diseases such as cerebral thrombosis by measuring an elastic coefficient, blood vessel compliance, blood flow resistance, and blood flow in each cerebrovascular branch. The measurement is achieved by biomechanically analyzing blood vessels in the brain using an electrocardiogram, phonocardiogram, electroencephalogram, pulse wave, and ultrasonic doppler signal as basic data in order to measure biomechanical properties and blood flow properties of blood vessels in the brain for the diagnosis of cerebrovascular diseases.
Abstract:
The present invention relates to a method and apparatus for protecting data using a virtual environment, which creates a safe virtual environment that supports the execution of application programs being operated on a computer and which enables important data to be inputted or outputted only within the virtual environment, such that access to the important data is prevented in a general local environment. According to the present invention, data leakage is initially prevented to protect data, and convenience is provided in that a user may use the computer in a general manner while performing desired work.
Abstract:
The present invention relates to a cardiovascular diagnostic system which enables early detection of cardiovascular diseases and defines their causes. Unlike known electrocardiographs, the cardiovascular diagnosis system can further measure elastic coefficient of blood vessels (the degree of arteriosclerosis), blood vessel compliance, blood flow, and blood flow resistance and velocity in blood vessel branches of the right and left coronary arteries. The elastic coefficient shows organic changes to blood vessels. The compliance shows organic and functional changes of blood vessels simultaneously. The blood flow shows blood flow resistance.
Abstract:
A system for logically separating a server using client virtualization includes a client terminal including a virtual environment generation unit for generating a virtual environment, and a virtualized server including a local storage unit, an authentication server for performing authentication on the client terminal when a request for access to the local storage unit is received from a process executed in the virtual environment, and a virtualization filter drier for allowing or blocking the access request to the local storage unit based on the authentication result of the client terminal. The client terminal further includes a virtualization filter driver for transmitting the access request from the process executed in the virtual environment to the local storage unit, and blocking the access request from the process without being made through the virtual environment to the local storage unit.
Abstract:
A non-volatile semiconductor memory device capable of reducing program disturb and a method of programming the same are provided. A bit line connected to a non-selected memory cell in the same block as a selected memory cell enters a floating state by inactivating a bit line selection switch, so that voltage levels of an first conductivity type channel and a source/drain terminal formed in a pocket second conductivity type well below a memory transistor have an intermediate level of a voltage level of a selection line and the pocket P type well. Therefore, program disturb caused by FN tunneling and junction hot electrons can be inhibited.
Abstract:
The present invention relates to a cerebrovascular analysis system which enables early diagnosis of various incurable cerebrovascular diseases such as cerebral thrombosis by measuring an elastic coefficient, blood vessel compliance, blood flow resistance, and blood flow in each cerebrovascular branch. The measurement is achieved by biomechanically analyzing blood vessels in the brain using an electrocardiogram, phonocardiogram, electroencephalogram, pulse wave, and ultrasonic doppler signal as basic data in order to measure biomechanical properties and blood flow properties of blood vessels in the brain for the diagnosis of cerebrovascular diseases.
Abstract:
A method of manufacturing a nonvolatile memory device is provided. The method includes forming an isolation layer in a semiconductor substrate defining an active region and forming a molding pattern on the isolation layer. A first conductive layer is formed on a sidewall and a top surface of the molding pattern and on the semiconductor substrate. The first conductive layer on the top surface of the molding pattern is selectively removed forming a conductive pattern. The conductive pattern includes a body plate disposed on the active region and a protrusion which extends from an edge of the body plate onto the sidewall of the molding pattern. The molding pattern is then removed. An inter-gate dielectric layer is formed on the isolation layer and the conductive pattern. Nonvolatile memory devices manufactured using the method are also provided.
Abstract:
In a nonvolatile semiconductor memory device, and a method of fabricating the same, the nonvolatile semiconductor memory device includes a cell doping region and source/drain regions in a semiconductor substrate, the cell doping region being doped as a first conductive type, a channel region disposed between the source/drain regions in the semiconductor substrate, a tunnel doping region of the first conductive type formed in a predetermined region of an upper portion of the cell doping region, the tunnel doping region being doped in a higher concentration than that of the cell doping region, a tunnel insulating layer formed on a surface of the semiconductor substrate on the tunnel doping region, a gate insulating layer surrounding the tunnel insulating layer and covering the channel region and the cell doping region exposed beyond the tunnel doping region, and a gate electrode covering the tunnel insulating layer and on the gate insulating layer.
Abstract:
A non-volatile memory integrated circuit device and a method of fabricating the same are disclosed. The non-volatile memory integrated circuit device includes a semiconductor substrate, a tunneling dielectric layer, a memory gate and a select gate, a floating junction region, a bit line junction region and a common source region, and a tunneling-prevention dielectric layer pattern. The tunneling dielectric layer is formed on the semiconductor substrate. The memory gate and a select gate are formed on the tunneling dielectric layer to be spaced apart from each other. The floating junction region is formed within the semiconductor substrate between the memory gate and the select gate, the bit line junction region is formed opposite the floating junction region with respect to the memory gate, and a common source region is formed opposite the floating junction region with respect to the select gate. The tunneling-prevention dielectric layer pattern is interposed between the semiconductor substrate and the tunneling dielectric layer, and is configured to overlap part of the memory gate.
Abstract:
Provided are an EEPROM cell, an EEPROM device, and methods of manufacturing the EEPROM cell and the EEPROM device. The EEPROM cell is formed on a substrate including a first region and a second region. A first EEPROM device having a first select transistor and a first memory transistor is disposed in the first region, while a second EEPROM device having a second select transistor and a second memory transistor is disposed in the second region. In the first region, a first drain region and a second floating region are formed apart from each other. In the second region, a second drain region and a second floating region are formed apart from each other. A first impurity region, a second impurity region, and a third impurity region are disposed in a common source region between the first and second regions of the substrate. The first and third impurity regions form a DDD structure, and the first and second impurity region form an LDD structure. That is, the first impurity region completely surrounds the second and third impurity regions in horizontal and vertical directions, the second impurity region surrounds the third impurity region in a horizontal direction, and the junction depth of the third impurity is greater than that of the second impurity region.