Abstract:
Digital noise removal methods and systems for picture quality improvement on next generation high quality set-top-box and digital TV SOCs is disclosed with particular to a de-blocking method and system that is effective on on-grid and off-grid blocky artifacts generated by lossy video compression standards. Blocky artifacts are filtered by extracting motions vectors for a current pixel block, calculating off-grid positions based on the extracted motion vectors, and applying de-blocking filtering along the calculated off-grid positions. The methods and systems can further skip filtering on-grid blocky artifacts to be filtered by an on-grid de-blocking filter known in the art.
Abstract:
The appearance of image details can be preserved and/or enhanced by applying contrast adaptive gain to the high spatial frequency component of the luminance information. The image details in bright and/or dark regions can be further boosted by applying a local mean adaptive gain. The contrast transfer mapping curve for luminance contrast enhancement can be re-scaled to account for the applied gain. The re-scaling may be performed from frame to frame of displayed video. The re-scaling may be temporally controlled for subsequent frames to make the re-scaling change gradually to prevent flickering.
Abstract:
Provided are a digital video rescaling system, a method of rescaling video images, and a chip comprising a computer executable medium embedded therein computer executable instructions for rescaling video images.
Abstract:
A video image processing system is described that generates the interpolated video images with sharp and jaggedness-free edges. A method of video image processing is also described that interpolates video images to generate the video images with sharp and jaggedness-free edges. The video image processing system receives and makes input image data available for further processing; analyzes the local features of the input image data; filters the input image data before performing interpolation process; modifies the phase value adaptive to the local edge distance; rescales the input image data in horizontal interpolation using the modified phase value; and rescales the horizontally interpolated image data in vertical interpolation using modified phase value.
Abstract:
A method for adaptive pre-filtering is disclosed, comprising the steps of: extracting tuning parameters from video encoding process; processing these tuning parameters to generate control parameters representative of the properties of the video data processed; coupling the control parameters to filter response; generating filter coefficients on selected filter response; and filtering the video data with the filter coefficients before video encoding. The filtering of video data is thus adapted to at least one or more tuning parameters of the video data and the encoding process. The filtering decreases the complexity of encoding by attenuation of high frequency, effectively decreasing the quantization step and reducing compression artifacts.
Abstract:
Apparatus for depacketizing and aligning packetized input data. Data processing means receives the input data via an input memory and detects, identifies and determines payload size of a data packet of the input data. The data processing means generates a payload size signal indicative of the size of the payload. A word formatter receives units of the payload from the input memory and gathers and aligns these to form data words. A payload counter controls flow of input data from the input memory to the word formatter in accordance with the payload size signal. An input buffer receives the data words from the word formatter, stores these and transfers them to the data processing means for effecting data processing.
Abstract:
A method and apparatus for decoding a bitstream (100) of transform coded multi-channel audio data. The bitstream is subjected to a block decoding process (101) to obtain for each input audio channel within the multi-channel audio data a corresponding block of frequency coefficients (102). Each block of frequency coefficients (102) is assigned a higher precision inverse transform or a lower precision inverse transform according to predetermined characteristics of the audio data represented by the block. The blocks of frequency coefficients are subsequently subjected to the assigned transform (105, 106) and an output audio signal (108) is generated in response to each of the higher and lower precision inverse transform processes.
Abstract:
A method and apparatus for decoding a multi-channel audio bitstream in which adaptive frequency domain downmixer (3) is used to downmix, according to long and shorter transform block length information (17), the decoded frequency coefficients of the multi-channel audio (12,13,14,15) such that the long and shorter transform block information is maintained separately within the mixed down left and right channels. In this way, the long and shorter transform block coefficients of the mixed down let and right channels can be inverse transformed adaptively (4,5,6,7) according to the long and shorter transform block information, and the results of the inverse transform of the long and short block of each the left and right channel added together (8,9) to form the total mixed down output of the left and right channel.
Abstract:
Methods and apparatus for enabling contrast adjustment to anaglyph images are described. Compensation techniques are employed to reduce ghosting artifacts that would otherwise be introduced by contrast adjustments to input images used to generate anaglyphs. The compensation techniques are applicable to various anaglyph imaging processes.
Abstract:
A method and apparatus are disclosed for identifying and removing banding artifacts (i.e., false contours) resulting from insufficient bit depth caused by digital image quantization, conversion, and/or compression. This method includes: explicitly identifying texture block and flat block; de-termination of filter window sizes with the consideration of handling transitions between texture block and flat block; de-banding filtering with edge protection; and noise shaping according to de-banding filter result.